
A High-Order and Interface-Preserving Discontinuous
Galerkin Method for Level-Set Reinitialization

Jiaqi Zhanga, Pengtao Yuea

aDepartment of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA

Abstract

A high-order numerical method for interface-preserving level-set reinitial-
ization is presented in this paper. In the interface cells, the gradient of the
level-set function is determined by a weighted local projection scheme and
the missing additive constant is determined such that the position of the
zero level set is preserved. In the non-interface cells, we compute the gra-
dient of the level-set function by solving a Hamilton-Jacobi equation as a
conservation law system using the discontinuous Galerkin method, following
the work by Hu and Shu [SIAM J. Sci. Comput. 21 (1999) 660-690]; the
missing constant is then recovered by the continuity of the level-set func-
tion while taking into account the characteristics. To handle highly distorted
initial conditions, we develop a hybrid numerical flux that combines the Lax-
Friedrichs flux and the penalty flux. Our method is stable for non-trivial
test cases and handles singularities away from the interface very well. When
derivative singularities are present on the interface, a second-derivative lim-
iter is designed to suppress the oscillations. At least (N+1)th order accuracy
in the interface cells and Nth order in the whole domain are observed for
smooth solutions when Nth degree polynomials are used. Two dimensional
test cases are presented to demonstrate superior properties such as accu-
racy, long-term stability, interface-preserving capability, and easy treatment
of contact lines. We also show some preliminary results on the pinch-off
process of a pendant drop, where topological changes of the fluid interface
are involved. Our method is readily extendable to three dimensions and
adaptive meshes.

Keywords: Hamilton-Jacobi equation, numerical flux, second-derivative
limiter, weighted local projection, moving contact line

Email addresses: zjiaqi@vt.edu (Jiaqi Zhang), ptyue@vt.edu (Pengtao Yue)

Preprint submitted to Journal of Computational Physics August 9, 2020

1. Introduction

Level-set methods, introduced by Osher and Sethian in [1], are popular
front capturing techniques which have been used intensively in computa-
tional physics and engineering [2, 3, 4, 5]. In a typical simulation, it is
preferable or necessary that the solution be initialized to a signed distance
function satisfying the Eikonal equation |∇φ| = 1, where φ is the level-set
function. However, it will not remain so in the process of advection, and
will become too flat or too steep. To prevent this, the solution needs to
be reinitialized to a signed distance function after a certain number of time
steps without changing the position of the interface.

There are different types of approaches to perform reinitialization. A
popular approach is to directly solve the Eikonal equation by some fast
algorithms, such as the fast marching methods [6, 7] and the fast sweeping
methods [8, 9]. A second approach, proposed by Sussman et al. [5], is to
evolve the following Hamilton-Jacobi (HJ) equation to steady state:

φt +H(∇φ) = 0, in Ω× [0, T] ⊂ Rn × R, φ(x, 0) = φ0, (1)

where H(∇φ) = S(φ0) (|∇φ| − 1), S is the sign function, φ0 is the initial
level-set function, and t is the pseudo time. For numerical stability, the
discontinuous sign function is always replaced by

Sη (φ0) =
φ0√
φ2

0 + η2
, (2)

where η is the smoothing parameter usually chosen to be the computational
cell size h. This PDE-based approach has been widely used in the level-set
methods for interfacial flows, e.g, [10, 11, 12, 13], and will be the focus of this
work. Another approach is the variational level-set method introduced by Li
et al. [14], where φ is evolved by the gradient flow for an energy functional,
the minimization of which leads to |∇φ| = 1. Basting and Kuzmin [15]
extended this method to the elliptic reinitialization, which is solved by a
Ritz-Galerkin finite element method. Extension to a discontinuous Galerkin
(DG) method was recently done by Utz et al. [16]. For more recent
advances and applications of the level-set methods, the readers are referred
to a recent review by Gibou et al. [17] and references therein.

It is well known that the zero level set tends to shift when we solve
HJ equation (1) numerically. This leads to mass loss in the simulation
of interfacial flows. Numerous techniques have been developed to improve
mass conservation. For example, Peng et al. [18] modified the smooth sign

2

function such that the interface is confined to one cell during reinitializa-
tion. Sussman et al. [19, 20] introduced a Lagrange multiplier to enforce
the mass conservation in each cell. Russo and Smereka [21] used a subcell
fix to correct the shift of the zero level set, which was later improved and
extended to higher order by Min [22] and du Chéné et al. [23]. Hartman
et al. [24, 25] proposed a constrained reinitialization scheme that solves a
least-squares problem to compute the level-set function in each interface cell.
Sophisticated methods are also proposed to correct the level-set function by
other mass conserving techniques, such as the particle level-set method [26]
and the coupled level-set/volume-of-fluid method [27, 28, 29]. It should be
noted that the conservative level-set method [30, 31] proposed by Olsson
et al. takes a different approach to conserve mass and it is more like a vari-
ant of the phase-field method [32, 33]. Some recent developments of this
method can be found in [34, 35].

Most high order methods for level-set reinitialization are based on struc-
tured meshes, eg., [9, 23, 36]. To achieve high order accuracy on unstruc-
tured meshes, DG methods, which have been very successful in solving con-
servation laws [37, 38, 39], seem to be the top choice. Although Zhang
and Shu [40] and Levy et al. [41] have successfully constructed finite volume
Weighted Essentially Non-Oscillatory (WENO) schemes for the HJ equation
on unstructured meshes, DG methods still have the advantages of compact-
ness, easy implementation, and superior scalability. Since the gradient of
the HJ equation form a system of conservation laws, DG methods can be
readily adapted to solve the HJ equation. Following this idea, Hu and Shu
[42] designed the first DG method for the HJ equation, which was later rein-
terpreted and simplified by Li and Shu [43]. Later, different DG methods are
proposed to directly solve the HJ equation [44, 45]. A recent review on DG
methods for HJ equations can be found in [46]. In literature, the particular
HJ equation (1) for level-set reinitialization was however mostly solved by
the finite difference methods or the finite volume methods. Sometimes, peo-
ple still stick to the more mature finite volume methods for (1) even though
they use the DG methods for other equations. For example, Fechter and
Munz used a fifth-order WENO scheme in the finite volume subcells of each
DG grid cell [47]; Marchandise et al. completely avoided reinitialization and
relied on a “discontinuous integration” that does not require φ to be a signed
distance function [48]. There are only a few successful implementations of
DG methods, both of which add an additional second-order diffusion term
to the right hand side of (1) and use some filtering technique to stabilize the
solution [49, 50].

In this paper, we develop an interface-preserving DG method for (1).

3

The computation cells are divided into interface cells and non-interface cells
and the solution of φ is decomposed into ∇φ and an additive constant.
In the interface cells, we construct ∇φ using a weighted local projection
method and determine the additive constant such that the interface location
is preserved. In the non-interface cells, we solve ∇φ using the DG method of
Hu and Shu [42] and then recover φ based on continuity. Our method is very
stable and does not need additional diffusion terms or filtering techniques.
For smooth φ with piecewise Nth degree polynomial space, we can achieve
(N + 1)th order accuracy in the interface cells and Nth order in the whole
domain. An additional benefit is that our method can be directly applied
to moving contact line simulations without complicated treatments on the
boundary [49, 51].

The rest of this paper is organized as follows: in Section 2, we describe
the algorithm to compute ∇φ in non-interface cells, where a novel hybrid
numerical flux is used. In Section 3, we present the interface-preserving
reconstruction of level-set function in the interface cells. In Section 4, a
second-derivative limiter is developed to stabilize the solution in the extreme
case when the interface has singularities. Numerical results are illustrated
in Section 5.

2. Discontinuous Galerkin method for Hamilton-Jacobi equation

In this paper, we consider (1) with the smooth sign function (2). If by
any chance |∇φ0| � 1 or � 1 on the interface, Sη(φ0) should be replaced

by Sη(
φ0
|∇φ0|) to maintain the thickness of the transition layer.

Following Hu and Shu [42], we can rewrite (1) as a conservation law
system by taking the gradient:

ut +∇H(u) = 0, in Ω× [0, T] ⊂ Rn × R, u(x, 0) = ∇φ0, (3)

where u = ∇φ. It should be noted that components of u are not completely
independent, eg., ∇× u = 0 is always satisfied.

In this work, we focus on two dimensions and quadrilateral meshes. But
the results can be easily extended to three dimensions and other types of
unstructured meshes. We assume that the domain Ω is well approximated
by the triangulation Th consisting of non-overlapping quadrilaterals with a
characteristic mesh size h. As in [43], we introduce two spaces of polynomi-
als:

V N
h =

{
v : v ∈ PN (K),∀K ∈ Th

}
, (4)

WN
h =

{
w : w = ∇v, v ∈ V N

h

}
, (5)

4

where PN (K) is the space of polynomials in K that is of degree at most
N . It should be noted other polynomial spaces such as QN can also be
used here. By approximating u by uh ∈ WN

h , multiplying (3) with the test
function w ∈WN

h , and performing integration by parts, we obtain the weak
formulation(

∂uh
∂t

,w

)
K

−(H (uh) ,∇ ·w)K+
(
Ĥ(u−h ,u

+
h),w

)
∂K

= 0, ∀w ∈WN
h , (6)

where (., .)K and (., .)∂K denote the inner products in the cell K and on its
boundary ∂K, respectively, eg.,

(uh,w)K =

∫
K
uh ·wdx, (7)

(
Ĥ(u−h ,u

+
h),w

)
∂K

=
∑
e∈∂K

∫
e
Ĥ(u−h ,u

+
h) ·wds. (8)

Ĥ(u−h ,u
+
h) is the numerical flux approximating H(uh)n, where n is the unit

outward pointing normal to the cell edge. u−h is the trace from the interior
of cell K, while u+

h from the interior of the neighboring cell. Details of

Ĥ(u−h ,u
+
h) is given in Sec. 2.1.

As for the finite dimensional space V N
h , we choose the Legendre polyno-

mial space, whose basis functions are L2-orthogonal and normalized in the
reference cell. Consequently, the first basis function v0 is constant across
the cell (equal to 1 in the reference cell). We approximate φ by

φKh =
m∑
i=0

civi, (9)

where vi ∈ V N
h , i = 0, 1, . . . ,m, are the basis polynomials, and m+ 1 is the

number of degrees of freedom. For the ease of presentation, we drop the
superscript K from φKh hereinafter. Then the approximation of ∇φ is given
by

∇φh = uh =

m∑
i=0

ci∇vi. (10)

Let wi = ∇vi ∈WN
h . Since v0 is constant, we can further simplify (10) to

∇φh = uh =

m∑
i=1

ciwi. (11)

5

Substituting (10) into (6), we can obtain

A
dc

dt
= F, (12)

where A ∈ Rm×m and Ai,j = (wi,wj)K , c = [c1, . . . , cm]ᵀ, and F ∈ Rm
with

Fi = (H (uh) ,∇ ·wi+1)K −
(
Ĥ
(
u−h ,u

+
h

)
,wi+1

)
∂K

. (13)

These m equations uniquely determine uh in K. Thus the calculation of
∇φh is completely decoupled from c0. To recover φh, we still need c0, and
this additional degree of freedom can be used to preserve the interface, as
discussed in Sec. 3.2.

2.1. The hybrid numerical flux

On a cell edge with normal n, as shown in Fig. 1, the flux is H(uh)n
and the Jacobian matrix is

J = n(∇uhH(uh))T = Sη(φ0)n
uTh
|uh|

. (14)

This matrix has rank one and its only non-zero eigenvalue is

a = Sη(φ0)n · uh
|uh|

. (15)

τ

n

u−
h

u+
h

Target cell Neighboring cell

Figure 1: The edge between two cells.

Since the wind direction is readily obtained from the sign of a, the Roe
flux can be easily implemented:

ĤRoe(u
−
h ,u

+
h) =

{
H(u−h)n, if a−+a+

2 ≥ 0,

H(u+
h)n, otherwise.

(16)

6

However it is entropy violating and generates unstable solutions according to
our numerical tests. Another choice is the Lax-Friedrichs (LF) flux following
[42] with slight modifications:

ĤLF (u−h ,u
+
h) = H(

u−h + u+
h

2
)n− α

2
JuhK, (17)

where α = maxuh |a| with the maximum taken over the relevant range and
JuhK = u+

h − u−h . We have tested the global LF (maximum taken over the
whole computational domain), local LF (maximum taken over the two cells
sharing the same edge), and the original local LF in [42]; they all work well
for initial conditions that are close to a signed distance function and deliver
almost identical solutions. In the rest of this work, we simply choose α = 1,
which corresponds to the global LF flux.

However, the LF flux falls short if the initial condition is far away from
a signed distance function. For example, it takes extremely long time to
achieve the steady state in the test case of Sec. 5.1.2. After carefully in-
specting the numerical results, we find that broken φh contours are likely to
occur where the cell edge is normal to the φh contours, i.e., when n ·uh ≈ 0.
A further look at H(uh)n reveals that the flux on a cell edge only affects the
normal component of uh, denoted by un ≡ (uh ·n)n, and has no effect on the
tangential component uτ ≡ uh − (uh · n)n. That is, the Riemann problem
on the cell edge is only for un instead of the whole vector uh, and there is
no mechanism to smooth out discontinuities in uτ . This is probably another
reason why the Roe flux (16) fails so easily. The LF flux (17) performs much
better because the JuhK term has contributions in the tangential direction,
which acts as a penalty term to enforce the continuity in uτ .

We thus come up with the following hybrid numerical flux which com-
bines the LF flux and the penalty flux:

Ĥ(u−h ,u
+
h) = H(

u−h + u+
h

2
)n− α

2
JunK−

β

2
Juτ K, (18)

where β is the penalty parameter. If β = α, (18) reduces to the LF flux (17).
To deal with the severely distorted initial conditions, we adjust β according

to the wind direction. Let a± = Sη (φ0)n · u±h
|u±h |

, then β is determined as

in Algorithm 1. We take βmin = 1 and βmax ≥ βmin. That is, β takes a
higher value if there is an expansion wave or the target cell is downwind.
The rationale is that u±τ should be changed more in the downwind cell than
in the upwind cell toward the final goal u−τ = u+

τ .

7

Algorithm 1 Determination of β

if a− ≤ 0 and a+ ≥ 0 then
β = βmax

else if a−+a+

2 > 0 then
β = βmin

else
β = βmax

end if

It should be noted that the numerical flux (18) is no longer conservative
because of the different β values at the two sides of the cell edge. But the
scheme is still monotone for piecewise constant uh, with the modified CFL
conditions for forward Euler in time:

∆t ≤ min
Ω

(
h

α+ βmax

)
(19)

in two dimensions and

∆t ≤ min
Ω

(
h

α+ 2βmax

)
(20)

in three dimensions.

3. Interface-preserving reconstruction of level-set function

In this section, we will develop a highly accurate approach that utilizes
the structure of the DG solution space to preserve the interface.

3.1. Determination of ∇φ in interface cells

Denote the zero level set by

Γ = {x ∈ Ω : φ0(x) = 0} , (21)

which is also the implicit expression of the interface. Note that φ and φ0

share the same zero level set. Then the set of interface cells are denoted by

I = {K ∈ Th : K ∩ Γ 6= ∅}. (22)

Theoretically, u = ∇φ remains normal to the interface and propagates
away from the interface along Sη(φ0)∇φ when we evolve (3). Let τ be the

8

unit tangent vector to the interface Γ, then τ ·∇φ0 = 0 at x ∈ Γ. Multiplying
(3) by τ , we have

τ · ut + τ · ∇H(u) = 0. (23)

Since S(φ0) = 0 for any x ∈ Γ, Γ is also the zero level set of H(u). Conse-

quently, τ · ∇H(u) = 0 and ∂(τ ·u)
∂t = τ · ∂u∂t = 0 on Γ, where we have used

the fact that Γ and thus τ are independent of t. Thus if we start with initial
condition u = ∇φ0, we should expect τ · u(x, t) = τ · u(x, 0) = 0 for any

x ∈ Γ. However, after discretization, ∂(τ ·u)
∂t could not remain exactly zero

on Γ. The errors may accumulate and eventually destroy the zero level set
in long-term simulations, as shown later in Sec. 5.2. This kind of instability
is common in PDE-based method. For example, it is well-known that the
interface tends to shift if the HJ equation (1) is evolved without any con-
straints [21, 52]. Thus u in the interface cells has to be determined by a
different approach and fixed during the pseudo time evolution.

Ideally, we want φh to be a signed distance function, i.e., φh = 0 on the
interface and |∇φh| = 1 in all cells. The former implies that φh and φ0 share
the same unit normal on the interface. Thus uh in an interface cell K ∈ I
needs to satisfy

uh =
∇φ0

|∇φ0|
on Γ ∩K, (24)

and
|uh| = 1 in K. (25)

Usually, these two conditions can not be satisfied simultaneously. But an
optimal uh in K ∈ I can be sought as the minimizer of the energy functional

E(u) =
1

2

∫
Γ∩K

(
u− ∇φ0

|∇φ0|

)2

ds+
λ

4

∫
K

(
|u|2 − 1

)2
dx, (26)

where λ is a positive penalty parameter controlling the weight of the con-
straint |u| = 1.

Let uh ∈WN
h be the solution to the minimization problem

min
u∈WN

h

E(u),

then uh satisfies the variational form∫
Γ∩K

(
uh −

∇φ0

|∇φ0|

)
·wds+λ

∫
K

(
|uh|2 − 1

)
uh ·wdx = 0,∀w ∈WN

h . (27)

9

The first term in (27) requires a surface integral on Γ ∩ K, which is not
known explicitly. To make this integral easy to compute numerically, we
replace it by a volume integral and rewrite (27) as∫
K

(
uh −

∇φ0

|∇φ0|

)
·wδ̄ε(φ0)dx + λ

∫
K

(
|uh|2 − 1

)
uh ·wdx = 0,∀w ∈WN

h ,

(28)
where δ̄ε is a shifted smooth delta function defined as

δ̄ε(φ0) =

{
1
2ε

(
1 + cos

(
π
ε

φ0
|∇φ0|

))
+ ξ

ε , if |φ0|
|∇φ0| < ε,

ξ
ε , otherwise.

(29)

Here ε is the half width of the narrow band and ξ is a small positive parame-
ter to avoid singular matrices. The choices of ε and ξ will be discussed toward
the end of this subsection. It should be noted that φ0 here is rescaled by
|∇φ0| just to take care of the extreme cases with |∇φ0| � 1 or � 1. Since
the first term in (28) essentially projects ∇φ0

|∇φ0| to a gradient space, this

method is hereinafter referred to as the weighted local projection (WLP)
method.

If the contours of φ0 are parallel lines or concentric circles, uh = ∇φ0
|∇φ0|

automatically satisfies the conditions (24) and (25). Note that φ0 does not
need to be a signed distance function here. In this case, the second term
in (28) plays no role. But for the more general case, ∇φ0|∇φ0| does not even
reproduce the gradient of any scalar function, because we cannot guarantee

that ∇×
(
∇φ0
|∇φ0|

)
= 0 (although ∇×∇φ0 = 0 is satisfied). Thus the second

(penalty) term in (28) is necessary to maintain the signed distance function
in the cell K, which will be further discussed in Sec. 5.1.2. It should be
noted that the idea of local projection was first seen in [53], where the author
projected φ0

|∇φ0| to φh in the interface cells. This is however inaccurate unless

|∇φ0| is a constant.
In practice, the quality of the WLP may deteriorate if the length of the

interface in cell K is very small. For example, if the interface only cuts a
small portion of the cell at one corner, the solution of (28) resembles rays
emanating from that corner such that the contours of φh are concentric
circles. This may be totally incorrect. To improve the quality of uh, the
neighboring cells have to be considered as well, which can be very compli-
cated. We take another route to avoid this problem. In fact, we only need
to anchor uh by the WLP in some interface cells, and uh in other interface
cells can be maintained by the diffusive numerical flux.

10

We thus define another set Ip ⊂ I, which only includes cells with suffi-
cient amount of interface:

Ip = {K ∈ I : |K ∩ Γ| ≥ p}, (30)

where |K ∩ Γ| is the length of the interface segment in K, and p < h is
a positive number. If Γ intersects K at two points, then |K ∩ Γ| can be
approximated by the distance between these two intersections. The details
on locating intersections and the complicated case with more than two in-
tersections will be discussed in Sec. 3.2. In practice, we choose p = h/2.
The WLP method (28) is applied to every cell K ∈ Ip and the DG method
(6) is used in all other cells. Thus the WLP solution in Ip serves as a bound-
ary condition for the DG method, and the accuracy of the WLP affects the
solution in the whole computational domain.

We employ Newton’s method to solve the non-linear problem (28). De-
noting the solution at the kth iteration by ukh, the solution at the (k + 1)th
iteration can be written as

uk+1
h = ukh + δuh, (31)

where δuh is the increment to be determined. Substituting (31) into (28) for
uh and dropping the higher order terms of δuh, we obtain the linear system
for δuh∫

K

[(
δ̄ε(φ0) + λ

(
|ukh|2 − 1

))
δuh ·w + 2λ

(
ukh · δuh

)(
ukh ·w

)]
dx

= −
∫
K

[(
ukh −

∇φ0

|∇φ0|

)
δ̄ε(φ0) + λ

(
|ukh|2 − 1

)
ukh

]
·wdx (32)

We solve (32) for δu and update uk according to (31) repeatedly, until
the residual, i.e., the right hand side of (32), is smaller than a prescribed
tolerance.

A good initial guess is crucial for Newton’s method to succeed, otherwise
it may not converge or converge to a wrong solution. An easy way to start
is to solve (28) with λ = 0, which reduces to a linear system, or simply solve∫

K

(
u0
h −

∇φ0

|∇φ0|

)
·wdx = 0, ∀ w ∈WN

h . (33)

It should be noted that Newton’s method proposed by Chopp [7] to compute
the closest point may fail to converge, especially in three dimensions [36, 54].
Our method, however, always converges provided that the solution of (33)

11

is used as the initial guess. Typically, it takes less than five iterations for
Newton’s method to converge to a tolerance of 10−10.

The WLP method can be summarized as follows. Firstly, identify the
set Ip (30). Secondly, for each cell K ∈ Ip solve (33) to get the initial guess
u0
h. Finally, solve (28) by Newton’s method (32).

We now discuss the choice of parameters in the WLP. To guarantee that
the matrix in (32) is non-singular, sufficient quadrature points have to be
included in the narrow band. Intuitively, the number of quadrature points
in the support of the smooth delta function (i.e., the narrow band) must
exceed the degrees of freedom in uh. A rule of thumb is that the distance
between quadrature points should not exceed the bandwidth 2ε. On the
one hand, limited by the number of quadrature points, ε can not be too
small. If the ∇φ0

|∇φ0| is close to the gradient of a signed distance function,
a large bandwidth of the interface, such as ε = 0.1h ∼ 1h, can produce
accurate results. This is usually the case when a signed distance function
is advected by the flow field only for a few time steps. But highly distorted
initial conditions usually require a much smaller bandwidth, such as ε =
0.001h ∼ 0.01h, as shown in the test cases of Sec. 5.1.2. On the other hand,
we use composite quadrature rules with sufficient number of quadrature
points in each interface cell K ∈ Ip. In order to maintain sufficient degree
of precision and also resolve the interface that almost overlaps with a cell
edge, we adopt a composite Gauss-Lobatto quadrature rule. Each cell is
divided into Q × Q subcells, and a 2N -point Gauss-Lobatto quadrature is
used in each cell to accurately integrate (32) with δu,uk ∈WN

h . This leads
to (2NQ − Q + 1)2 quadrature points in total. For example, in order to
resolve ε = 0.01h with N = 3, we need at least 10 × 10 subcells with 2601
quadrature points. Oftentimes in practice, this condition can be relaxed to
save quadrature points without severely affecting the solution accuracy.

As we have mentioned before, a shift parameter ξ is introduced to further
improve conditioning of the matrix. The numerical results are not very
sensitive to ξ and we typically choose ξ = 0.01ε/h. Extra attention is
required on the the choice of λ if |∇φ0| is highly non-uniform or if a high
order DG method is used. A too small λ may end up with a φh that deviates
from a signed distance function while a too big λ may cause the interface to
shift. We usually choose λ = 100.

In the end, we would like to comment on the differences between the
WLP method and the minimization-based elliptic reinitialization (ER) meth-

12

ods [15, 16]. The target functional to be minimized in ER is

F (φ) =
1

2

∫
Ω

(|∇φ| − 1)2dx +
αER

2

∫
Γ
φ2ds, (34)

where αER is a parameter similar to our 1/λ. First of all, ER is a global
method while the WLP is a local method that is easy to parallelize. Secondly,
ER directly enforces φ = 0 while the WLP imposes∇φ = ∇φ0

|∇φ0| on Γ. Since φ

varies along the normal direction to the interface, the surface integral of (34)
is very sensitive to the location of the interface. Sophisticated techniques
such as moment-fitting [55] have to be used for accurate surface integral on
Γ. On the contrary, ∇φ0 is nearly constant along the interface normal unless
φ0 is heavily distorted. Thus the surface integral in the WLP (27) is not
that sensitive to the interface location and we can safely replace it with a
volume integral as in (28).

3.2. Determination of c0

The previous sections only determine c1, c2, · · · , cm in uh as shown in
(10). But we still need c0 to recover the complete φh as shown in (9). Hu
and Shu [42] suggested two ways to compute c0: directly solving∫

K

φh
∂t

+∇H(φh) = 0, ∀K ∈ Th (35)

or integrating ∇φh

φh(x, t) = φh(x0, t) +

∫ x

x0

∇φh · ds (36)

along some path from x0 to x. In the second method, φh(x0, t) needs to be
computed by the first method in one or a few cells. The first method always
leads to the shift of the zero level set, similar to most other PDE-based
reinitialization methods. We thus adopt the second method but determine
φh(x0, t) in an interface-preserving way.

3.2.1. Interface cells

Suppose φ∗ is the exact solution, i.e., the signed distance function sat-
isfying |∇φ∗| = 1 in Ω and φ∗ = 0 on Γ. Our goal is to obtain φh that ap-
proximates φ∗ as accurate as possible. Ideally, uh determined from Secs. 2
and 3.1 is already a good approximation of ∇φ∗. To achieve φh ≈ φ∗,
we just need to find the appropriate c0 in each cell K. Apparently, if

13

φ∗ ∈ V N
h and uh = ∇φ∗, then we can easily recover the exact φ∗ by im-

posing φh(x0) = φ∗(x0) for any point x0 ∈ K. For non-interface cells,
this method is not practical because φ∗ is unknown. But for interface cells,
we can choose x0 to be some convenient point on the interface, e.g. the
intersections between the interface and the cell edges.

Numerically, we identify the interface cells by checking the φ0 values at
the vertices: a cell is a non-interface cell if φ0 at its four vertices (eight
vertices for hexagonal cells in 3D) are all positive or all negative, otherwise
it is an interface cell. This criterion may miss some interface cells, such as
Fig. 2 (d) and (e). But in those cases, either the interface can be taken care
of by the neighboring cells or the interface curvature is too high (> 1

h). For
high curvatures, the DG polynomial space could not accurately recover the
interface anyway, and mesh refinement is usually the only way to go, which
is beyond the scope of this work.

(a)

Â

B̂

(b) (c)

(f)(e)(d)

Figure 2: Some typical configurations of interface cells in the reference frame. (a) and
(b) are the regular interface cells that can be easily identified. Only two intersections
of (c) can be detected and it is treated in the same way as (b). (d) and (e) are not
numerically detected as in interface cells. (f) is detected but the interface curvature is too
high. Numerically, (d), (e), and (f) are not included in set I. Other cases, including the
extremely rare cases of interface passing through one or more vertices, are not included
here but considered in our code.

For simplicity, we only discuss the cases with two detected intersections,
denoted by Â and B̂ in Fig. 2. We consider the problem in the reference

14

frame, where the reference cell is the unit square [0, 1]× [0, 1]. A point (x, y)
in the physical cell is mapped to (x̂, ŷ) in the reference cell with φ0(x, y) =
φ̂0(x̂, ŷ), where we have used ˆ to denote the quantities in reference frame.
The exact locations of Â and B̂ can be obtained from φ̂0(Â) = φ̂0(B̂) = 0.
For example, the location of Â in Fig. 2 (a) can be obtained by solving
φ̂0(0, ŷA) = 0 using the secant method with starting values 0 and 1 (two ends
of the edge). If the iteration diverges or converges to a solution outside
[0, 1], we switch to the root-bracketing false position method. Then the
coordinates of A can be recovered from Â. Since we have two intersections
but only one unknown, c0 can be determined by solving the least squares
problem

min
c0

∥∥∥∥[φh(A)− φ0(A)
φh(B)− φ0(B)

]∥∥∥∥
2

= 0. (37)

This problem has a simple solution

c0 = −φh(A)|c0=0 + φh(B)|c0=0

2
, (38)

where φh(·)|c0=0 denotes φh(·) evaluated with c0 = 0. To preserve the in-
terface, we perform this procedure on every cell K ∈ I. This method can
be easily extended to 3D where we can still use intersections between the
interface and the edges (instead of faces of the 3D cell) to determine c0 .

3.2.2. Non-interface cells

In each cell K, from uh, we can easily recover φh(x)|c0=0, which differs
from the complete φh(x) only by an additive constant c0. Meanwhile, (36)
also implies that φh(x) is continuous across the cells. This leads to a more
efficient method than directly integrating (36).

Consider two neighboring cells KA and KB. Suppose c0 in KA, denoted
by c0,A, is already known. Then c0,B in KB can be determined by the
continuity across their shared edge. Since we only need one constraint here,
we can use the continuity at any point on the shared edge. In this work, we
use the edge center E, and c0,B can be determined from

c0,B = φh,A(E)− φh,B(E)|c0,B=0, (39)

which is equivalent to (36) with an integration path starting from any point
in KA, ending at any point in KB, and passing through E. This procedure
can be repeated until c0 is propagated from the interface cells to all non-
interface cells. A simple way is to update c0 based on mesh connectivity: we

15

first update the direct neighbors of interface cells, then update the neighbors
of neighbors, and so on.

Theoretically, the line integral in (36) is path independent. However,
this is not the case numerically, especially when the path goes through sin-
gularities formed by intersecting characteristics (eg., the center of a circular
interface). It makes more sense to update c0 following the characteristics
rather than taking an arbitrary path. For example, we use KA to update
KB only when the characteristic direction Sη(φ0)∇φ points from KA to KB,
i.e., KA is the upwind cell and KB is the downwind cell. To make sure all
information is taken from the zero level set along the characteristics, we bor-
row some ideas from the Fast Marching method [6] and the Fast Sweeping
method [8], and come up with Algorithm 2. In this algorithm we have used
the fact that c0 is a approximately the cell average of φh (exact average in
the reference cell), and solution propagates from a cell with lower |c0| to a
cell with higher |c0|. The additional condition on S(φ0)∇φh · n is just to
double confirm that the neighbor is the upwind cell. If the target cell has
multiple upwind neighbors, then we take the c0 with the smallest magni-
tude. If the target cell does not have any upwind neighbors, which rarely
happens in real calculations, we simple keep the c0 determined from mesh
connectivity.

4. Slope limiter for ∇φh

The DG method in Sec. 2 can handle discontinuities in ∇φh quite well
in most cases. However, if the interface has singularities, such as sharp
corners on a square interface as shown in Sec. 5.3, numerical oscillations
may develop. In this case the limiters are necessary. Since the limiters are
rarely used, we simply follow the method by Cockburn and Shu [56]. For
better accuracy, the readers are referred to the WENO limiters [57, 58, 59].

The construction of the slope limiter is based on uh at vertices, since it is
easier to extend to adaptive quadrilateral meshes. Consider two-dimensional
quadrilaterals as shown in Fig. 3 where Ci, i = 0, . . . , 4, denote the barycen-
ter of the quadrilateral Ki, and Vi, i = 1, . . . , 4, the vertex of cell K0.
Observe that

V1 − C0 = α1 (C1 − C0) + α2 (C2 − C0) (40)

for some nonnegative coefficients α1 and α2 that can be obtained from ge-
ometric positions of barycenters and vertices. Then we can compute the
difference of uh between vertex V1 and cell center C0 based on the cell av-
erages:

g1 = α1 (ūh,1 − ūh,0) + α2 (ūh,2 − ūh,0) , (41)

16

Algorithm 2 Upwind update of c0 in non-interface cells.

1 Compute an approximate c0 in all non-interface cells based on mesh con-
nectivity.

2 Sort all non-interface cells in an increasing order of |c0|.
for all sorted non-interface cells do

Set c = Inf.
for all edges of the target cell do

Identify the neighboring cell sharing the same edge.
if S(φ0)∇φh · n < 0 AND |ctarget0 | > |cneighbor0 | then

Compute cnew0 in the target cell based on the current neighbor

if |cnew0 | > |cneighbor0 | then
Update c = min(c, |cnew0 |).

end if
end if

end for
if c 6= Inf then

Set ctarget0 = sign(ctarget0)c in the target cell.
end if

end for

V4

V2 V1

V3

g1
C0

C2

C1

Figure 3: Limiters in a quadrilateral mesh.

where

ūh,i =
1

|Ki|

∫
Ki

uhdx, i = 0, . . . , 4. (42)

Here |Ki| denotes the area of cell Ki. Similarly, we can compute gi, i =
2, 3, 4.

17

Let
∆i = minmod (uh(Vi)− ūh,0, νgi) , (43)

where the minmod function is defined as

minmod(a, b) =

{
smin(|a|, |b|), if s = sign(a) = sign(b),
0, otherwise,

(44)

and ν is a constant chosen from interval [1, 2]. If a and b are vectors, then
the minmod function is applied component-wise. When ∆i = uh(Vi)− ūh,0
for all i = 1, . . . , 4, limiting is not necessary in cell K0. Otherwise, uh = ∇φh
with φh ∈ PN (K0) is limited to ũ = ∇φ̃ with

φ̃ = c̃0 + c̃1ψ1(x) + c̃2ψ1(y) + c̃3ψ1(x)ψ1(y) + c̃4ψ2(x) + c̃5ψ2(y) ∈ P 2(K0),
(45)

where ψ1 and ψ2 are the first and second Legendre polynomials. Note that
we are only concerned about ∇φ̃ here, so c̃0 does not matter and we only
need to find c̃1, c̃2, · · · , c̃5.

If limiting is required, we compute ũ that approximates the limited di-
rectional derivatives along the two diagonals of K0. This can be done by
solving the least squares problem:

min
c̃3,c̃4,c̃5

∥∥∥∥[(V4 − V1) · ∇ũ
(V3 − V2) · ∇ũ

]
−
[
2minmod (∆4,−∆1)
2minmod (∆3,−∆2)

]∥∥∥∥
2

, (46)

where ∇ũ =

[
2c̃4 c̃3

c̃3 2c̃5

]
. In addition, the conservation of u requires

∫
K0

ũdx =

∫
K0

uhdx. (47)

For a 2D quadrilateral cell, (46) supplies three constraints and (47) supplies
two constraints, which uniquely determines the five coefficients in ũ (gradi-
ent of a quadratic polynomial). In 3D, ũ has nine coefficients (φ̃ ∈ P 2(K0)
has ten coefficients) which can be determined from the six constraints in
(46) and three in (47). Once ũ is obtained, we directly enforce uh = ũ in
K0.

To avoid overly limiting, we only apply the procedure above when
−S(φ0)∇2φ > 1

h in K0, i.e., if the characteristics are converging and the
curvature of φ contours is very high.

18

5. Numerical examples

In this section, we show the accuracy, long-term stability, and interface
preserving properties of our algorithm. Unless otherwise stated, we choose
the following parameters: N = 3, βmax = 3, λ = 100, ε = cεh with cε = 0.1,
ξ = cξcε with cξ = 0.01, and Q = 5. The computational domain is a square
with 64× 64 uniform cells.

Discontinuous Galerkin methods are usually combined with the total
variation diminishing (TVD) Runge-Kutta (RK) methods [60] to achieve
high orders in both space and time. For convection dominated problems,
when a DG method with polynomial degree N is paired with an (N + 1)th-
order TVD RK method, stability requires CFL ≤ 1

2N+1 [61]. For other
RK and DG combinations, stability condition has to be established based
on numerical tests. For example, the third-order TVD RK is stable for DG
polynomial degrees with the following maximum CFL numbers: 0.130 for
N = 3, 0.089 for N = 4, 0.066 for N = 5, etc. More details can be found
in [61] and references therein. In our simulations, we adopt the third-oder
TVD RK for time integration and choose ∆t = 0.1h for N = 3, such that
CFL = 0.1.

The numerical algorithm is summarized as follows:

(i) Prepare initial condition. If φ0 is not given in the DG solution space,
project it to φh,0 ∈ V N

h and start the simulation with φh,0.

(ii) Use the WLP method to determine ∇φh in Ip (Sec. 3.1).

(iii) Solve the HJ equation using DG for ∇φh in Th/Ip until convergence
(Sec. 2). Apply the second-derivative limiter if necessary (Sec. 4).

(iv) Determine c0 in I and propagate it to all cells (Sec. 3.2). Now we get
the complete solution φh in the computational domain.

The code is developed based on the deal.II finite element library [62, 63].

5.1. Convergence tests

We consider a circular interface in a square domain Ω = [−2, 2]2. The
the initial condition is given by

φ0 = g (x)
(√

x2 + y2 − r
)
, (48)

where r = 0.9. The exact solution satisfying (1) is φ∗ =
√
x2 + y2 − r. We

test two different initial conditions with g(x) = g1(x) = 0.8 and g(x) =
g2(x) = 0.1 + (x− r)2 + (y − r)2. The former has a uniform |∇φ0| and ∇φ0

|∇φ0|

19

directly yields the exact solution ∇φ∗. While the latter, taken from [24],
results in very non-uniform |∇φ0|.

To investigate the accuracy of the WLP method, we define the following
errors on the interface. In order to measure the displacement of the interface
from its initial position, we introduce

EI =
1

L

∫
K∈I
|Hε (φh)−Hε (φ∗)| dx, (49)

where L is the length of the interface, φ∗ is the exact solution, and Hε is a
smooth Heaviside function defined as

Hε(φ) =


0, if φ < −ε,
1, if φ > ε,
1
2

(
1 + φ

ε + 1
π sin

(
πφ
ε

))
, otherwise.

(50)

We also define the averaged L2 error

E2 =

√√√√ 1

np

∑
K∈Ip

1

|K|

∫
K

(φh − φ∗)2 dx (51)

and the L∞ error
E∞ = max

K∈Ip
|φh − φ∗| (52)

to measure the error in the interface cells. Here np is the number of cells in
Ip and |K| is the area of cell K.

To investigate the accuracy of the whole method in the computational
domain, we define the L2 error

e2 =

√∑
K∈Ω0

(φh − φ∗)2, (53)

and the L∞ error
e∞ = max

K∈Ω0

|φh − φ∗| . (54)

Here we take Ω0 = [−2, 2]2 \ [−0.4, 0.4]2 to exclude the center of the circular
interface, which is a singular point. The cell size of the uniform grids are
h = 0.8

2l
, where l = 0, 1, · · · , 4 is the level of refinement. To guarantee

that the steady state is achieved, we compare ∇φh every 200 pseudo time
steps. If the L2-norm of the difference in Ω0 is below 10−15, then we stop
the computation; otherwise, the problem is computed to the pseudo time
t = 15.

20

1 6 11 16 21
10

­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
0

N=2, =0, order=2.40

N=3, =0, order=2.64

N=2, =100, order=2.81

N=3, =100, order=3.69

(a) E2 of (φh)x

1 6 11 16 21
10

­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
0

10
1

N=2, =0, order=2.38

N=3, =0, order=2.35

N=2, =100, order=2.55

N=3, =100, order=3.72

(b) E∞ of (φh)x

Figure 4: Convergence of the WLP method for the circular interface with g = g1. The
errors are evaluated in the interface cells Ip. cε = 0.1 and Q = 5.

5.1.1. Convergence tests for g(x) = g1(x)

For g1(x) = 0.8, ∇φ0|∇φ0| is uniform and we do not need a small ε in the
WLP. We fix cε = 0.1 and Q = 5, and test λ = 0 and 100. Owing to
the symmetry in ∇φh, we only compute the errors of (φh)x (derivative with
respect to x), which are given in Fig. 4. The orders in the legends, in this
figure and all the following figures, are computed based on a power fitting
without considering the data points from the coarsest mesh. For polynomial
degree N (roughly degree N − 1 for ∇φh) we can achieve at least order N
for ∇φh. The only exception is the case with N = 3 and λ = 0. Since∣∣∣ ∇φ0|∇φ0|

∣∣∣ = 1 is automatically satisfied, theoretically, the value of λ in (28)

should not matter. But after we project φ to φh,0 ∈ V N
h ,
∣∣∣ ∇φ0|∇φ0|

∣∣∣ is no longer

one. Thus the numerical results are still dependent on λ. For N = 3,
λ = 100 gives better results than λ = 0.

The solution from the WLP is then fed to the Hamilton-Jacobi equation
as “boundary conditions”. For both N = 2 and 3, the steady state is
achieved within t = 6. The errors of ∇φh in the region with the central
singularity removed are shown in Fig. 5. In L2-norm, the convergence orders
of ∇φh as shown in Fig. 5(a) are slightly lower than those in the WLP, but
are still essentially of order N . This is expected from the (N − 1)th degree
polynomials for ∇φh. In L∞-norm, the convergence order drops to around
N − 1

2 , probably because of some individual cells that are poorly resolved.
Note that e∞ of (φh)x even increases at the first two data points of the

21

1 6 11 16 21
10

­5

10
­4

10
­3

10
­2

10
­1

10
0

N=2, =0, order=2.10

N=3, =0, order=2.96

N=2, =100, order=2.13

N=3, =100, order=3.37

(a) e2 of (φh)x

1 6 11 16 21
10

­4

10
­3

10
­2

10
­1

10
0

N=2, =0, order=1.45

N=3, =0, order=2.18

N=2, =100, order=1.48

N=3, =100, order=2.70

(b) e∞ of (φh)x

Figure 5: Convergence of the DG method for the circular interface with g = g1. The
errors are evaluated in Ω0 = [−2, 2]2/[−0.4, 0.4]2.

N = 3 and λ = 0 curve in Fig. 5(b). This is because in the coarsest 5 × 5
mesh, most cells in Ω0 are interface cells which do not participate in the DG
computation. This kind of abnormal behavior occurs frequently for errors
evaluated in Ω0, which is also the reason why we exclude the first data point
in computing the convergence orders.

1 6 11 16 21
10

­9

10
­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

N=2, =0, order=3.60

N=3, =0, order=3.33

N=2, =100, order=4.10

N=3, =100, order=5.55

Figure 6: Interface displacement, measured by EI in the interface cells I, for the circular
interface with g = g1.

The c0’s in all interface cells are directly computed by (38) and the
displacement of the zero level set is given in Fig. 6. For λ = 100, |∇φh| = 1
is enforced in the whole interface cell at the cost of the accuracy on the

22

interface; thus the values of EI with λ = 100 are higher than those with
λ = 0 in most situations. However, the error with λ = 100 quickly catches
up as mesh refines and the convergence order is at least N + 2. For all λ
and N values, the convergence orders of EI are above N , which is sufficient
for the overall Nth order convergence for φh to be discussed later.

1 6 11 16 21
10

­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

N=2, =0, order=3.31

N=3, =0, order=3.77

N=2, =100, order=3.81

N=3, =100, order=4.95

(a) E2 of φh in Ip

1 6 11 16 21
10

­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
0

N=2, =0, order=3.17

N=3, =0, order=3.49

N=2, =100, order=3.46

N=3, =100, order=4.58

(b) E∞ of φh in Ip

1 6 11 16 21
10

­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
0

N=2, =0, order=2.06

N=3, =0, order=3.06

N=2, =100, order=1.90

N=3, =100, order=3.37

(c) e2 of φh in Ω0

1 6 11 16 21
10

­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
0

N=2, =0, order=2.02

N=3, =0, order=3.17

N=2, =100, order=1.79

N=3, =100, order=3.39

(d) e∞ of φh in Ω0

Figure 7: Errors of φh for the circular interface with g = g1.

The errors of φh are given in Fig. 7. Since φh is essentially the line
integral of ∇φh, the order of convergence should be one order higher than
∇φh if the path length is O(h) and of the same order as ∇φh if the path
length is O(1). This is confirmed by the convergence order N + 1 in Ip and
the convergence order N in Ω0.

For higher polynomial degree N , our method can still maintain the op-
timal convergence orders: order N for ∇φh, order N + 1 for φh in interface

23

1 6 11 16 21
10

­10

10
­8

10
­6

10
­4

10
­2

10
0

N=4, E
2
, order=4.00

N=5, E
2
, order=4.99

N=4, E , order=4.08

N=5, E , order=5.05

(a) Errors of (φh)x in Ip

1 6 11 16 21
10

­12

10
­10

10
­8

10
­6

10
­4

10
­2

10
0

N=4, E
2
, order=5.21

N=5, E
2
, order=5.88

N=4, E
∞
, order=5.10

N=5, E
∞
, order=6.01

(b) Errors of φh in Ip

1 6 11 16 21
10

­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
0

N=4, e
2
, order=4.66

N=5, e
2
, order=5.85

N=4, e
∞
, order=3.96

N=5, e
∞
, order=4.69

(c) Errors of (φh)x in Ω0

1 6 11 16 21
10

­10

10
­9

10
­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

N=4, e
2
, order=4.62

N=5, e
2
, order=7.05

N=4, e
∞
, order=4.74

N=5, e
∞
, order=6.35

(d) Errors of φh in Ω0

Figure 8: Convergence tests of higher order methods for circular interface with g = g1.
λ = 0, Q = 5, cε = 0.1.

cells, and (at least) order N for φh in the whole domain. The results for
N = 4 and 5 are presented in Fig. 8. To reduce the sources of error, the
exact initial condition (55) is directly used without projecting onto V N

h in
the WLP of these tests.

It should be noted that the closest point algorithm by Saye [36] can also
achieve arbitrarily high order. A key component of this algorithm is the least
squares polynomial approximation of φ0 around the interface, which always
leads to very wide stencils in the finite difference framework. In principle,
this algorithm can be adapted to DG and become another option for high
order accuracy on unstructured meshes.

24

20
16

12

8

4

0

­1

6

10

14

18

x

y

­2 ­1 0 1 2
­2

­1

0

1

2

(a) φ0

2
1

1

2

4

6

8

1012

141618

20
x

y

­2 ­1 0 1 2
­2

­1

0

1

2

(b) |∇φ0|

Figure 9: The initial condition for circular interface with g(x) = g2(x).

5.1.2. Convergence tests for g(x) = g2(x)

When the signed distance function is disturbed by g2(x), ∇φ0
|∇φ0| is far

from the exact solution ∇φ∗ except on the interface. The initial condition,
as shown in Fig. 9, exhibits highly non-uniform ∇φ0, and |∇φ0| ranges from
0.239 to 4.82 in interface cells. Thus extra care has to be taken in the choice
of parameters such as the penalty parameter λ in the WLP, the bandwidth
parameter cε = ε/h of the smooth delta function, and βmax in the numerical
flux.

1 6 11 16 21
10

­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
0

N=2, =0, order=1.94

N=3, =0, order=0.63

N=2, =100, order=2.01

N=3, =100, order=3.19

(a) E2 of (φh)x

1 6 11 16 21
10

­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

N=2, =0, order=2.80

N=3, =0, order=1.66

N=2, =100, order=3.25

N=3, =100, order=4.47

(b) E2 of φh

Figure 10: Effect of λ for circular interface with g = g2. The errors are evaluated in the
interface cells Ip. cε = 0.001, Q = 50, and βmax = 3.

We first investigate the effect of λ in the WLP. To make sure that the

25

surface integral on the interface is accurately evaluated, we use a very small
bandwidth with cε = 0.001 and each cell is divided into 50×50 subcells (Q =
50) in numerical integration. We test λ = 0 and 100 for polynomial degrees
N = 2 and 3. The errors in the interface cells are given in Fig. 10. When
λ = 100, the optimal convergence orders are achieved for both polynomial
degrees: Nth order for ∇φh and (N + 1)th order for φh. λ = 100 delivers
better results than λ = 0, especially for N = 3. This is due to the fact
that the Q3 polynomial space has more degrees of freedom to better satisfy
∇φh = ∇φ0

|∇φ0| on the interface, but at the cost of violating |∇φh| = 1 in the
interface cells to a higher degree. Thus it is necessary to impose the second
term in (28) to enforce |∇φh| = 1 if φ0 is far from a signed distance function,
especially for a high polynomial degree N .

1 6 11 16 21
10

­5

10
­4

10
­3

10
­2

10
­1

10
0

N=2, Q=5, c =0.1, order=1.84

N=3, Q=5, c =0.1, order=1.65

N=2, Q=50, c =0.001, order=2.10

N=3, Q=50, c =0.001, order=3.27

(a) e2 of (φh)x

1 6 11 16 21
10

­6

10
­5

10
­4

10
­3

10
­2

10
­1

10
0

N=2, Q=5, c =0.1, order=1.94

N=3, Q=5, c =0.1, order=1.95

N=2, Q=50, c =0.001, order=1.95

N=3, Q=50, c =0.001, order=3.35

(b) e2 of φh

Figure 11: Effect of ε for the circular interface with g = g2. The errors are evaluated in
Ω0 = [−2, 2]2 \ [−0.4, 0.4]2. λ = 100, βmax = 3.

We next investigate the influence of the bandwidth ε in the smooth
delta function. We test cε = 0.1 and compare with cε = 0.001, as shown
in Fig. 11. To avoid repeating the ε = 0.001 curves in Fig. 10, we use the
errors evaluated in Ω0 here. The errors in the interface cells lead to the
same conclusion. When cε = 0.001, the surface integral on the interface is
well approximated and optimal convergence order is achieved: order N for
both φh and ∇φh in Ω0. For N = 2, cε = 0.1 yields almost the same errors

as cε = 0.001. This is because ∇φh (and also
∇φh,0
|∇φh,0| after projection onto

V N
h) is roughly linear at N = 2. In this case, integration of ∇φh in the

narrow band is only dependent on the values at the center of the narrow
band, i.e., the interface; thus the results for N = 2 are insensitive to cε. For
N = 3, ∇φh is no longer linear and cε = 0.1 produces much larger errors

26

than cε = 0.001.
We finally investigate the influence of βmax in the numerical flux. The

convergence results for βmax = 1, 2, and 3 are given in Fig. 12. When
βmax = 1 the solution does not converge at pseudo time t = 15 as we refine
the mesh, while βmax = 2 and 3 provides similar convergence order. The
pseudo time to reach the steady state for βmax = 2 and 3 are t = 14.55 and
7.24, respectively. After we apply the WLP, there is a big jump between
cells in Ip and their neighboring cells, which would generate oscillations.
With larger βmax, these oscillations can be dissipated away more quickly.
In the test, we set the maximum pseudo time to t = 15; therefore it is
possible that, given enough time, βmax = 1 can also generate the desired
convergence order. Figure 13 shows the contours of (φh)x. It is obvious that
βmax = 3 almost reproduces the exact solution, βmax = 2 still has oscillations
at the center, and βmax = 1 exhibits the most severe oscillations. We further
present the contour plots of φh for βmax = 2 and 3 in Fig. 14, where we can
see that βmax = 3 reproduces the exact solution at the center at an earlier
stage. It should be noted that it takes longer than t = 1 for the φh contours
to reach steady state because we use the smooth sign function (2), which
causes the speed of propagation along the characteristics to be smaller than
one near the interface.

1 6 11 16 21
10

­6

10
­5

10
­4

10
­3

10
­2

10
­1

max
=1, order=­

max
=2, order=3.38

max
=3, order=3.35

Figure 12: Effect of βmax for the circular interface with g = g2. The errors are e2 of φh
evaluated in Ω0 = [−2, 2]2/[−0.4, 0.4]2. N = 3, λ = 100, cε = 0.001, and Q = 50.

red

27

x

y

­2 ­1 0 1 2
­2

­1

0

1

2

(a) βmax = 1

x

y

­2 ­1 0 1 2
­2

­1

0

1

2

(b) βmax = 2

x

y

­2 ­1 0 1 2
­2

­1

0

1

2

(c) βmax = 3

Figure 13: (φh)x at t = 3 for g = g2 using different βmax. Contours run from −1 to 1 with
interval 0.2. N = 3, λ = 100, cε = 0.001, Q = 50, and h = 0.05.

x

y

­2 ­1 0 1 2
­2

­1

0

1

2

x

y

­2 ­1 0 1 2
­2

­1

0

1

2

x

y

­2 ­1 0 1 2
­2

­1

0

1

2

x

y

­2 ­1 0 1 2
­2

­1

0

1

2

(a) t = 1

x

y

­2 ­1 0 1 2
­2

­1

0

1

2

(b) t = 2

x

y

­2 ­1 0 1 2
­2

­1

0

1

2

(c) t = 3

Figure 14: Evolution of φh for g = g2 using different βmax. βmax = 3 for the top row and
βmax = 2 for the bottom row. Contours run from -0.8 (center) to 1 with interval 0.1. The
thick line denotes the interface. N = 3, λ = 100, cε = 0.001, Q = 50, and h = 0.05.

5.1.3. Reinitialization in three dimensions

Our method can be easily extended to 3D and the same set of parameters
still work. It should be noted that the deal.II library allows for dimension-
independent programming by including the number of dimensions as a tem-
plate parameter. Thus, in terms of coding, there is almost no difference
between 2D and 3D.

28

We consider a spherical interface in Ω = [−2, 2]3 with the initial condition

φ0 = g3 (x)
(√

x2 + y2 + z2 − r
)
, (55)

where
g3(x) = 0.1 + (x− r)2 + (y − r)2 + (z − r)2 .

Figure 15 shows the 3D results using the same parameters as in 2D compu-
tations. There is only one exception: we may need a smaller pseudo time
step in 3D because the stability requirement (20) in 3D more restrictive
than Eq. (19) in 2D. The results in Fig. 15 are obtained using ∆t = 0.05h.
According to our tests, ∆t = 0.1h still works for βmax ≤ 2.

(a) t = 0 (b) t = 1.5

Figure 15: Reinitialization in 3D. N = 3, βmax = 3, λ = 100, cε = 0.1, cξ = 0.01, and
Q = 5. The mesh size is h = 1/16, which corresponds to 643 cells. The thick line denotes
the interface.

5.2. Elliptic interface

In this example, we would like to show the long-term stability of our
method. We reinitialize an elliptic interface in a unit square. The initial
condition is given by

φ0(x, y) = (x− 0.5)2 + 6 (y − 0.5− 0.5h)2 − 0.1, (56)

as shown in Fig. 16. To make the problem more challenging, the interface
is shifted in y-direction by half cell size such that its major axis, where
discontinuities in ∇φ occur, does not align with cell edges.

We solve the PDE (3) in all cells by the DG method and determine c0 still
using the interface location. The results are illustrated in Fig. 17 together

29

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 16: Initial condition φ0 for the elliptic interface. The thick line denotes the inter-
face. Contours run from −0.1 to 1.2 with interval 0.1.

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) t = 5

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) t = 10

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) t = 15

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d) t = 5

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(e) t = 10

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(f) t = 15

Figure 17: Evolution of φh for the elliptic interface. The interface cells are solved by
evolving the PDE (3) in the top row, while the interface cells in Ip are fixed by the WLP
method in the bottom row. Contours run from −0.1 to 0.4 with interval 0.05. The thick
line is φh = 0. N = 3 and h = 1/64.

with the WLP method for interface cells. At t = 5, both methods generate
the same signed distance function and the derivative discontinuities inside

30

the interface are well captured. However, if we continue the calculation,
oscillations start to appear if the interface cells are solved by the PDE. The
reason is that ∇φh in the interface cells are not influenced by any neighbors
and the error may grow without bound. The WLP method resolves this
issue by anchoring ∇φh in Ip, a subset of all interface cells.

5.3. Square interface

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

­0.08

­0.07

­0.06

­0.05

­0.04

­0.03

­0.02

­0.01

0

x

y

0.66 0.68 0.7 0.72 0.74 0.76

0.66

0.68

0.7

0.72

0.74

0.76

(a) t = 0

0

­0.01

­0.02

­0.03

­0.04

­0.05

­0.06

­0.07

­0.08

­0.1

­0.09

x

y

0.66 0.68 0.7 0.72 0.74 0.76

0.66

0.68

0.7

0.72

0.74

0.76

(b) t = 0.4 without limiter

0

­0.01

­0.02

­0.03

­0.04

­0.05

­0.06

­0.07

­0.08

­0.09

­0.1

x

y

0.66 0.68 0.7 0.72 0.74 0.76

0.66

0.68

0.7

0.72

0.74

0.76

(c) t = 0.4 with limiter

Figure 18: Reinitialization of the square interface without (b) and with (c) limiters. The
top row shows the solutions in the whole domain, with contours running from −0.25 to
0.25 with interval 0.05. The bottom row shows the close-up views of φh near the upper-
right corner of the interface. For visualization purposes, each actual computational cell is
divided into 2× 2 cells demarcated by the dotted grid lines. N = 3 and h = 1/64.

Generally, we do not need to apply limiters. However when the interface
has extremely high or singular curvatures, such as the corners of a square
interface, it is necessary to consider the limiter. In this example, we consider
the initial condition

φ0(x, y) = 0.8 (max{|x− 0.5|, |y − 0.5|} −R0) (57)

in a unit square, where R0 = 16.7h ≈ 0.26 such that all the interface cells are
included in Ip. Note that after we project the initial condition to φh,0 ∈ V N

h

as shown in Fig. 18(a), the corner is no longer sharp, and the the zero level set

31

is broken. This numerical oscillation is typical when polynomials, especially
those of high degrees, are used to represent non-smooth interfaces. A similar
deficiency at the interface corner was also reported in [36]. In practice, a
better way to treat the curvature singularity is to smooth it out to a rounded
corner, and then refine the mesh to resolve the high curvature. This is out
of the scope of this paper. In Fig. 18 (b), the solution without limiters
develops oscillations along the diagonals of the square, where characteristics
from different interface segments converge. These oscillations are damped
and a much better signed distance function is obtained when the limiter is
applied, as shown in Fig. 18(c), regardless of the singularities at the corners
of the interface.

In the special case when the kinks are located on cells edges, the numeri-
cal flux can deal with the the discontinuities without limiting. For example,
if we rotate the square interface 45° clockwise, then a diamond interface

φ0(x, y) = 0.8
(
|x− 0.5|+ |y − 0.5| −

√
2R0

)
(58)

is obtained, as shown in Fig. 19(a). In this case, the perfect signed dis-
tance function, as depicted in Fig. 19(b), can be easily obtained without
any limiter.

x

y

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a) t = 0

x

y

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(b) t = 0.4

Figure 19: Reinitialization of a square interface with all kinks on the cell edges. No limiter
is applied. Contour levels run from −0.25 to 0.25 with interval 0.05. N = 3 and h = 1/64.

5.4. Contact line

In contact line problems, the fluid interface intersects the solid wall and
may result in boundary segments where boundary conditions are required

32

A B

φ > 0

C
R

φ = 0

θ

φ < 0

Figure 20: Schematic of a drop sitting on the lower wall of a rectangular domain [−2, 2]×
[0, 2]. The interface is a part of a circle, which is given by |x − x0| = R with x0 =
(0,−2 − R cos(θ))ᵀ. R is the radius of the circle and θ is the contact angle. A and B
are the contact lines (points in 2D) where the interface meets the solid wall. The arrows
denote the directions of the characteristics.

for reinitialization. For example, for the interface as shown in Fig. 20, we
have

Sη(φ0)
∇φ
|∇φ|

· nw > 0

on AB, and

Sη(φ0)
∇φ
|∇φ|

· nw < 0

elsewhere on the lower wall with the outward unit normal nw. As a result,
the characteristics go into the computational domain from the lower wall
outside AB, where boundary condition has to be supplied. We refer to this
part of the boundary as inflow boundary and denote it by

∂Ωin = {x ∈ ∂Ω : S(φ0)∇φ · nw < 0}. (59)

Different approaches have been proposed to supply boundary conditions
on ∂Ωin. The first approach is to use ghost cells, where the φ values are
obtained by extrapolation[51, 64]. However, the use of ghost cells is very
difficult to extend to unstructured mesh and curved boundary. The second
approach is to compute φ on ∂Ωin by solving a reinitialization problem
but only on the boundary [49]. Another approach is to solve a relaxation
equation in the first layer of cells along the inflow boundary such that ∇φ|∇φ| ·nw
is fixed [65]. But this approach is dependent on the quality of φ0 away
from the interface. In our method, since we solve for ∇φ, the treatment of
inflow boundary is much simpler: Dirichlet conditions for ∇φ can be directly
imposed on ∂Ωin.

33

The computational setup is given in Fig. 20 and the initial condition is
given by

φ0 =

√
x2 + (y + 2 +R cos θ)2 −R. (60)

The computational domain is meshed into 64× 32 uniform square cells.

x

y

­2 ­1 0 1 2
­2

­1.5

­1

­0.5

0

Figure 21: Reinitialization of a drop with a contact angle θ = 3π/4. The solid lines are
φh contours at t = 1, while the dotted lines are φ0. Contours run from −0.8 to 1 with
increment 0.2. N = 3 and h = 1/16.

We test two cases with different contact angles θ = 3π/4 and π/6. In
the first one we set R = 1 and θ = 3π/4. The inflow boundary is the portion
inside a drop: Ωin = [−1, 1] × 0. Based on the interface normals at A and
B, we impose the the boundary condition:

u =


(
−
√

2
2 ,−

√
2

2

)ᵀ
, if − 1 ≤ x ≤ 0, y = 0,(√

2
2 ,−

√
2

2

)ᵀ
, if 0 < x ≤ 1, y = 0.

(61)

As shown in Fig. 21, the solution φh at t = 1 is exactly the same as φ0

outside the triangle ∆ABC. But the solution in ∆ABC is determined by
the boundary condition (61). In this region, the contours are straight lines
intersecting the boundary at the angle θ = 3π/4.

The numerical method works equally well for the second case with an
acute contact angle θ = π/6 andR = 2. In this case, ∂Ωin = ([−2,−1] ∪ [1, 2])×
0, and the boundary condition for (3) is given by

u =


(
−1

2 ,
√

3
2

)ᵀ
, if − 2 ≤ x ≤ −1, y = 0,(

1
2 ,
√

3
2

)ᵀ
, if 1 ≤ x ≤ 2, y = 0.

(62)

34

x

y

­2 ­1 0 1 2
­2

­1.5

­1

­0.5

0

Figure 22: Reinitialization of a drop with a contact angle θ = π/6. The solid lines are
φh contours at t = 1, while the dotted lines are φ0. Contours run from −0.2 to 1 with
increment 0.2. N = 3 and h = 1/16.

As shown in Fig. 22, the level sets in the region above the inflow boundary
are straight lines intersecting the boundary at the angle θ = π/6.

It should be noted that the ∇φ condition on the inflow boundary is ar-
tificial, and the choice is not unique. The bottom line is that the boundary
condition should maintain |∇φ| = 1 and produce smooth level sets. For ex-
ample, for circular interfaces in Figs. 21 and 22, it is difficult to say whether
the solution φh at pseudo time t = 1 is better than φ0 with concentric level
sets. But in the general case, when the interface shape is arbitrary, imposing
∇φ condition based on the contact angle seems the most feasible. For three-
dimensional problems where the solid wall is a two-dimensional surface, the
angle that the level sets make with the wall can be obtained by solving the
normal extension equation on that surface [64].

5.5. Interface deformation in a swirling vortex

In this example, we demonstrate the interface-preserving performance of
our method in moving interface problems.

5.5.1. Short-time vortex test

Following [66, 67, 30], we consider the deformation of a circular interface
in a swirling flow with the velocity field

v (x, T) =

[
− sin2 (πx) sin (2πy)
sin2 (πy) sin (2πx)

]
(63)

which is reversed at T = 0.5, in a square domain of size [0, 1]2. Note that
T is the flow time, which should be distinguished from the pseudo time t

35

used in the level-set reinitialization. Therefore, the interface will return to
the initial position at T = 1. The initial condition is

φ0(x, y) =
√

(x− 0.5)2 + (y − 0.75)2 − 0.15 (64)

and the computation domain is a square of size [0, 1]2.
The level-set equation

∂φ

∂T
+∇ · (φv) = 0 (65)

is solved by the DG method [39] with a local LF flux for spatial discretization
and the third order TVD Runge-Kutta method for time integration. The
time step is chosen to be ∆T = 0.1h such that the corresponding CFL
number is 0.1.

The solutions at different time instants are shown in Fig. 23. Our method
produces a signed distance function for different interface shapes with good
quality. The comparison between numerical and exact solutions is presented
in Fig. 24. At T = 1, the circle is accurately recovered (see the dashed line)
except for a small portion near the top, which is caused by the error at the
high-curvature tip as shown in Fig. 24(a).

Conservation of mass, i.e., the area bounded by the zero level set, is
given in Fig. 25(a). We first reinitialize the level-set function every time
step, which amounts to 640 reinitializations. The maximum error is −0.39%,
which is comparable to that of the conservative level-set method in [30] at the
same mesh resolution. The interface displacement as illustrated in Fig. 24 is
however at least at the same level as h = 1/128 in [30]. It should be noted
that the conservative level-set method, by design, conserves the integral of
φ, but that does not necessarily preserve the exact interface location.

In practice it is usually not necessary to perform reinitialization every
time step, especially for small time steps. For example, the reinitialization is
performed every 10 steps in [52] and even 100 steps in [47]. Our simulation
with reinitialization every 10 steps gives a much better result: the relative
error is −0.045%, nearly 1

10 of the original one. The interfaces at T = 0.5
and 1 are almost the same as the exact ones as shown in Fig. 24.

Before the flow reversal, the maximum of the interface curvature in-
creases with time and reaches 32 (i.e., 1

2h) at T = 0.28, as shown in Fig. 25(b).
The relative errors of area are −7.07×10−6 and −5.66×10−6 at T = 0.28125
for reinitializations every 1 step and 10 steps, respectively. This indicates
that our method barely causes any mass loss for a smooth interface with a
low curvature (. 1

2h). The mass loss mostly occurs during T ∈ [0.28, 0.72],

36

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) T = 0.25

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) T = 0.5

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) T = 0.75

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d) T = 1

Figure 23: Circular interface sheared by a vortex that is reversed at T = 0.5. Reinitializa-
tion is performed every time step till a pseudo time t = 0.1. φh contours run from −0.04
to 0.1 with interval 0.02. The thick line is the zero level set. N = 3 and h = 1/64.

when curvature is above 1
2h . This is expected because the polynomial space

cannot accurately resolve the curvature radius that is comparable to or
smaller than the cell size h. If the curvature is too high, there is also a
possibility that the interface cell is not detected by our method, such as
Fig. 2(e). One way to resolve high curvature is mesh refinement. The re-
sults with h = 1/128 is included in Fig 25(a) for comparison. Although
1280 reinitializations are performed during T ∈ [0, 1], the relative error is
amazingly small: −0.012%. This error can be further reduced if we perform
reinitialization every few time steps.

37

x

y

0.7 0.8 0.9
0.6

0.7

0.8

0.9

(a) T = 0.5

x

y

0.4 0.5 0.6

0.6

0.7

0.8

0.9

(b) T = 1

Figure 24: Comparison of the interface. The dashed and dotted lines represent the numer-
ical solutions obtained by reinitialization every 1 time step and reinitialization every 10
time steps, respectively. The solid lines represent the exact solution, which almost overlap
with the dotted lines. N = 3 and h = 1/64.

Time

R
e

la
ti

v
e

 e
rr

o
r

in
 a

re
a

0 0.2 0.4 0.6 0.8 1
­0.004

­0.003

­0.002

­0.001

0

0.001

Reinitialize every 1 step, h=1/64

Reinitialize every 1 step, h=1/128

Reinitialize every 10 steps, h=1/64

(a)

Time

C
u

r
v

a
tu

r
e

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

120

(b)

Figure 25: (a) Relative error in area bounded by the interface. (b) Maximum curvature
of the exact interface.

5.5.2. Long-time vortex test

To demonstrate the capability of our method in handling long filaments,
we consider a slightly modified velocity field

v (x, T) =

[
− sin2 (πx) sin (2πy) cos(πt/8)
sin2 (πy) sin (2πx) cos(πt/8)

]
(66)

38

following [68, 54, 34, 35]. The interface gets fully stretched at T = 4 and
restores to initial state at T = 8. Thanks to the easy implementation of
adaptive mesh refinement in the DG framework, we use an adaptive mesh
with finest mesh size hmin = 1/512 at the interface. More details of on the
adaptive mesh can be found in Sec. 5.7. For stability, we choose ∆T = 2.5×
10−4 for N = 2 and ∆T = 10−4 for N = 3. We perform 20 reinitializations
with every time unit.

As shown in Fig. 26, the circle is accurately recovered at T = 8, except
for some oscillations at the drop tip. The area loss of N = 2 (0.15%)
is comparable to those obtained by Gómez et al. [68] (0.11% to 0.197%)
on a 2562 main grid and Herrmann [54] (0.28%) with h = 1/1024, both
using finite difference. Since Gómez et al. divided each cell around the
interface into 42 subcells, their finest mesh size is hmin = 1/1024, which is
comparable to our N = 2 in terms of degrees of freedom. However, our
results with N = 3 is even worse than that with N = 2, which is probably
because a higher order method is more prone to numerical oscillations when
the solution is non-smooth. This is consistent with the consensus that one
should use p-refinement for the smooth part and h-refinement for the singular
part of the solution in hp-finite element methods.

5.5.3. Vortex test in 3D

We consider a sphere with radius r = 0.15 centered at (0.35, 0.35, 0.35)
in a divergence free velocity field [69, 26, 70, 35]

v (x, T) =

 2 sin2(πx) sin(2πy) sin(2πz) cos(πT/3)
− sin(2πx) sin2(πy) sin(2πz) cos(πT/3)
− sin(2πx) sin(2πy) sin2(πz) cos(πT/3)

 . (67)

The sphere gets fully stretched at T = 1.5 and restores to its initial shape
at T = 3. We use an adaptive mesh with hmin = 1/256 and DG with N = 2.
The time step is chosen to be 0.00025 and we perform 40 reinitializations
within every time unit. The other parameters are the same as those in 2D
calculations.

As shown in Fig. 27, numerical oscillations appear at the equator of the
sphere at T = 3. This is likely due to the lack of mesh resolution to describe
the thin film: the smallest film thickness at T = 1.5 is less than hmin. Our
mass loss 1.62% is slightly greater than the second order level-set method
by Min and Gibou, who reported a volume loss of 0.74% with hmin = 1/512,
but with a slightly different velocity field. The DG conservative level-set
method by Jibben and Herrmann [35] seem to perform much better with
a volume loss of 0.25% on a 1282 uniform mesh with N=2. But they only

39

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0.55 0.56 0.57 0.58

0.09

0.1

0.11

0.12

(a) N = 2, T = 4

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0.55 0.56 0.57 0.58

0.09

0.1

0.11

0.12

(b) N = 3, T = 4

x

y

0.4 0.5 0.6

0.6

0.7

0.8

0.9

(c) N = 2, T = 8

x

y

0.4 0.5 0.6

0.6

0.7

0.8

0.9

(d) N = 3, T = 8

Figure 26: Circular interface under long-time shear. The solid line (red) is the exact
solution , while the dashed line is the numerical solution. The insets show the zooms of
the tail tip. Relative error in area bounded by the interface are 0.15% and 0.29% for N = 2
and N = 3, respectively. An adaptive mesh with hmin = 1/512 is used and the maximal
number of cells (at T=4) is around 25000, which amounts to a 1582 uniform mesh.

performed three reinitializations for the whole simulation while we did 120
reinitializations. This makes the numbers not directly comparable. We have
to point out that the conservative level-set methods may perform better for
non-smooth solutions, because their formulation has a diffusion term that
regularizes the level-set function, especially when discontinuity at the film
center develops. But the conservative level-set function has a steep variation
at the interface and thus looses the numerical convenience of the signed
distance function. Further discussions between the conservative level-set
methods and the classical level-set methods are beyond the scope of this
work.

40

(a) T = 1.5 (b) T = 3

Figure 27: Deformation of a sphere under shear. The relative error in volume is 1.62% at
T = 3. The maximal number of cells is 460400, which amounts to a 773 uniform mesh.
N = 2, βmax = 3, λ = 100, cε = 0.1, cξ = 0.01, Q = 5, and hmin = 1/256.

5.6. Rotation of a slotted disk

We consider the rigid boby rotation of a slotted disk [71] in the unit
square [0, 1]2. The velocity is

v (x, T) =

[
π(0.5− y)/3.14
π(x− 0.5)/3.14

]
, (68)

such that the period of rotation is 6.28. A circular disk of radius 0.15 is
initially centered at (0.5, 0.75), with a slot of width 0.05 and length 0.25
being cut off. The initial condition for φ is obtained based on the closest
distance to the interface. We test two uniform meshes, h = 1/128 and 1/256,
with time steps ∆T = 0.001 and 0.0005. In both cases, we reinitialize the
level-set function every 10 time steps so that the frequency of reinitialization
is comparable to that in [24]. The level-set equation is solved in the same
way as in Sec. 5.5, and all the other parameters are kept the same. No
slope limiter is used in this problem because the sharp corner quickly gets
smoothed.

The interface shapes are given in Fig. 28. In the left column, the in-
terfaces after different full revolutions almost overlap. Close-up views at a
sharp corner are shown in the right column. The initial interface here is the
zero level set after projecting the exact signed distance function to the DG
space. It is thus discontinuous at the corner. After rotation, the corner is

41

eventually rounded to a smooth curve with curvature radius being approx-
imately 2h. The relative mass losses after three revolutions, as shown in
Figure 29, are around 0.1% and 0.06% for h = 1/128 and 1/256, respec-
tively. These are much smaller than 0.86% on a 2562 mesh and 0.43% on
a 5122 mesh obtained by Hartmann et al. [24] using a fifth-order upstream
central scheme. It should be noted that our DG method with N = 3 has
ten degrees of freedom (DOF) in each cell. If we compare the DOF, our
1282 mesh still has less DOF than the 5122 finite difference mesh. More
importantly, the majority of the mass loss occurs in the initial stage when
the sharp corner cannot be well approximated by the DG polynomial space.
Once the corner is rounded to such an extent that the curvature can be
resolved by the computational mesh, further rotation causes very little mass
loss. The mass loss in [24], however, grows almost linearly with the num-
ber of revolutions. In comparison, our method preserves interface better,
especially in long-time simulations.

5.7. Pinch-off of a pendant drop

In this subsection, we show the capability of our method in handling
topological changes. Following [72, 73, 74], we consider the growth and
pinch-off of a drop from a capillary tube, with radius a, into an ambient
fluid, as illustrated in Fig. 31(a). In the following, we only briefly explain
the governing equations and the numerical methods. More details and code
validations will be presented in a follow-up paper.

Following the standard treatment in level-set literature, the two-phase
flow is governed by a single set of equations:

ρ

(
∂u

∂T
+ u · ∇u

)
= ∇ ·

(
−pI + τ + σδω(φ)|∇φ|

(
I− ∇φ⊗∇φ

|∇φ|2

))
− ρgez

(69)
and

∇ · u = 0, (70)

where τ = µ (∇u + (∇u)ᵀ) is the viscous stress, g is the gravitational accel-
eration, and σ is the surface tension. The density ρ and the viscosity µ of
the mixture are given by

ρ = Hω(φ)ρ1 + (1−Hω(φ))ρ2, (71)

µ = Hω(φ)µ1 + (1−Hω(φ))µ2, (72)

where Hω(φ) is the smooth Heaviside function, as defined in Eq. (50), but
with ε replaced by the half-width ω of the fluid interface. The subscripts

42

0.3 0.4 0.5 0.6 0.7

0.6

0.7

0.8

0.9

0.5 0.51 0.52 0.53
0.83

0.84

0.85

0.86

(a) h = 1/128

0.3 0.4 0.5 0.6 0.7

0.6

0.7

0.8

0.9

0.5 0.51 0.52 0.53
0.83

0.84

0.85

0.86

(b) h = 1/256

Figure 28: Rotation of the slotted disk. The solid (black) line represent the initial inter-
face. The dashed (red), long-dashed (green), and dash-dotted (blue) lines represent the
interfaces after one, two, and three revolutions. The right column shows the zoom of the
upper-right corner of the slot. For visualization purposes, each actual computational cell
is divided into 2× 2 cells demarcated by the dotted grid lines. N = 3. (color online)

1 and 2 denote the fluid properties inside (φ > 0) and outside (φ < 0) the
drop, respectively. δω(φ) is the smooth delta function obtained by taking
the derivative of Hω(φ). The flow equations (69,70) are solved using a mixed
finite element method with Q2 for velocity and Q1 for pressure. A Crank-
Nicolson scheme is adopted for temporal discretization. The discretized
linear system is solved by the sparse direct solver UMFPACK [75].

Since the flow is axisymmetric, we only compute half of the meridian
plane. The computational domain is [0, 4a]× [0, 10a] in the r-z plane. The
mesh is refined at the interface until a minimum mesh size hmin = 1

64a is
reached and coarsened far away from the interface until a maximum mesh

43

Time

R
e

la
ti

v
e

 e
r
r
o

r
 i
n

 a
r
e

a

0 5 10 15 20
­0.0012

­0.001

­0.0008

­0.0006

­0.0004

­0.0002

0

h=1/128

h=1/256

Figure 29: Relative error in the area of the slotted disk.

size hmax = 1
2a is reached, as illustrated in Fig 30. We take ω = 1.5hmin.

r

z

­4 ­2 0 2 4
0

2

4

6

8

10

r

z

­0.15 ­0.1 ­0.05 0 0.05 0.1 0.15

6.65

6.7

6.75

6.8

6.85

6.9

6.95

7

Figure 30: Computational mesh before pinch-off occurs. T̄ = TV
a

= 3.3478. The right
panel shows a zoom of the mesh around the neck. The thick lines are the φ = 0 level set.

On the upper boundary, we impose the inflow condition:

u =

{
−2V

(
1−

(
r
a

)2)
ez, if r < a

0, otherwise,
(73)

where V is the average velocity in the capillary tube. Symmetry, slip, and
zero stress conditions are imposed on the left, right, and lower boundaries,
respectively. The interface is initially hemispherical. We take a = 1, ρ1 = 1,
ρ2 = 0.5, µ1 = µ2 = 0.178, σ = 1, g = 0.930, and V = 0.0172 such that

44

the dimensionless groups match those of [74]: density ratio ρ1
ρ2

= 2, viscosity

ratio µ1
µ2

= 1, Capillary number Ca = µ1V
σ = 3.05 × 10−3, Bond number

Bo = (ρ1−ρ0)ga2

σ = 0.465, and Weber number We = ρ1V 2a
σ = 2.95× 10−4. To

present the transient results, we define a dimensionless time T̄ = TV
a .

The time step is determined adaptively based on the mesh size and the
fluid velocity. Limited by the DG method for the level-set equation, the
CFL number is set to 0.1. We reinitialize φ every 50 time steps before the
pinch-off, but when it gets close to pinch-off (T̄ ≈ 3.35), φ is reinitialized
every time step in order to better capture the detachment of the drop. The
pseudo stopping time is 4ω, i.e., a signed distance function is maintained in
the narrow band |φ| < 6hmin. Since φ is always close to a signed distance
function, there is no need to use a large λ and we simply take λ = 1. Other
parameters for reinitialization are N = 3, cε = 0.1, Q = 5, βmax = 3.

The evolution of the interface is given in Fig. 31. The pinch-off occurs at
T̄ = 3.3495, after which a primary drop detaches and several satellite drops
form. At pinch-off, the horizontal radius of the primary drop is 1.33a, very
close to the 1.3a extracted from Fig. 2 of [74]. The φ contours in the neck re-
gion near the instant of pinch-off are given in Fig. 32. After pinch-off, the tip
of the thin filament above the primary drop quickly retracts upwards. The
topological transitions are well captured by the current method, although
the curvature at filament tip is beyond the mesh resolution. Meanwhile,
capillary waves develop and the filament eventually breaks up, as shown in
Fig. 32(c,d). The radii of the filament in Fig. 32(d) and the bulb at its lower
end are about 0.1hmin and hmin, respectively.

r

z

­1 0 1
2

4

6

8

10

3.3478

3.2831

3.0917

2.0728

TV/a=0

r

z

­1 0 1
2

4

6

8

10

TV/a=3.3495

r

z

­1 0 1
2

4

6

8

10

TV/a=3.3643

r

z

­1 0 1
2

4

6

8

10

TV/a=3.3747

Figure 31: Snapshots of the pinch-off process of a pendant drop.

45

r

z

­0.2 0 0.2
6.2

6.4

6.6

6.8

­0.1 ­0.06 ­0.02 0.02 0.06 0.1

(a) T̄ = 3.3495

r

z

­0.2 0 0.2
6.2

6.4

6.6

6.8

­0.1 ­0.06 ­0.02 0.02 0.06 0.1

(b) T̄ = 3.3500

r

z

­0.2 0 0.2
6.2

6.4

6.6

6.8

­0.1 ­0.06 ­0.02 0.02 0.06 0.1

(c) T̄ = 3.3529

r

z

­0.2 0 0.2
6.2

6.4

6.6

6.8

­0.1 ­0.06 ­0.02 0.02 0.06 0.1

(d) T̄ = 3.3643

Figure 32: φ contours near the instant of pinch-off. The thick line denotes the interface.

We have to point out that the successful capture of the filament much
thinner than the cell size in this test case is fortuitous: the shock wave of
φ inside the filament lies exactly on the axis of symmetry. In the general
case, the WLP method may have trouble in capturing sub-cell structures
for the following two reasons. First, if both sides of the filament passes
through the same cell, similar to Fig. 2(f), our method fails to identify that
cell as an interface cell. Of course, this can be resolved if we consider all
the possibilities of interface cells. But the second reason is more substan-
tial: the polynomial approximation suffers from large errors in case of shock
waves or other sub-cell structures inside the cell. This limitation applies to
all methods based on high-degree polynomial approximation. In interfacial
flows, mesh refinement is probably the only way to go because the flow field
also needs to be resolved.

In the end, we would like to comment on the computational cost of
our reinitialization method. On a regular Cartesian mesh, we have to ad-
mit that the DG method is usually much slower than its finite-difference or
finite-volume counterparts. There are several reasons, eg., DG uses many
quadrature points for numerical integration and DG needs to deal with more
degrees of freedom on the same computational mesh. In our case, there is an
additional reason: our code is developed for general unstructured quadrilat-
eral and hexagonal meshes, and it does not save any computational cost on a
regular Cartesian mesh. But DG has its own advantages on stencil compact-
ness, high order accuracy, hp-refinement, unstructured mesh, and parallel
performance. In interfacial flows, the cost of reinitialization is not a concern
as long as it much less the flow solver. On a single core of a Intel Xeon E5
2.4G processor, our code spends 1.01 s and 3.02 s (wall time) on average on
matrix assembly and direct sparse solver, respectively, for one time step of

46

flow equations in the pendant drop problem (typically around 7500 cells).
In comparison, it only takes around 0.18 s to perform one pseudo time step
of level-set reinitialization, which is much less than the flow solver. The cost
of reinitialization is almost negligible if we only perform reintialization every
many flow time steps. On eight cores, the computation times of matrix as-
sembly and level-set reinitialization are brought down to 0.16 s and 0.034 s,
respectively, while the computational time for the direct sparse solver almost
remain the same. The cost of reinitialization can be further reduced if we
only perform reinitialization within a narrow band of the interface [18, 68].

6. Concluding remarks

We have developed a high-order level-set reinitialization method that
preserves the zero level set. The major conclusions are summarized as fol-
lows.

(i) For the Nth degree piecewise polynomial space, both the weighted
local projection and the discontinuous Galerkin method can achieve
the optimal Nth order convergence in ∇φ for smooth solutions. The
convergence order of φ is at least N + 1 in the interface cells and N in
the whole domain. The interface displacement may even achieve order
N + 2.

(ii) The penalty flux is necessary to produce smooth solutions, especially
when the initial φ is highly distorted.

(iii) The numerical method is stable in most cases and handles the discon-
tinuities in ∇φ with ease. But in the extreme case with singularities
on the interface, the second-derivative limiter may be needed.

(iv) Since we compute∇φ instead of φ in the discontinuous Galerkin method,
the boundary condition for the Hamilton-Jacobi equation is easy to set
up for contact line problems.

(v) The mass loss is negligible if the highest interface curvature can be
resolved by the computational mesh. Mesh refinement is suggested if
interface curvature exceeding 1

2h or other sub-cell structures need to
be resolved. In the moving interface problems, mass conservation can
be further improved if we preform reinitialization only once every few
time steps.

There are many parameters in the proposed method, the tuning of which
may be necessary when the initial φ is highly distorted. But for general
interfacial flows, where φ is usually reinitialized before it gets too distorted,

47

these parameters are no longer sensitive and we recommend the following
values: βmax = 3, ε = 0.1h, λ = 1, ξ = 0.01ε/h, and Q = 5.

It should be noted that the use of Runge-Kutta discontinuous Galerkin
method for the convection dominated level-set equation always leads to a
small CFL number. This may be too restrictive, especially, if the level-set
method is coupled with an implicit flow solver. One solution to this issue is
to use multiple sub-steps for the level-set equation within each time step for
the flow solver [34].

The method proposed in this paper can be easily extended to other types
of unstructured meshes and complex geometry. The coupling with a finite-
element flow solver for moving contact line problems is currently ongoing.

Acknowledgements

This work was supported by the National Science Foundation (Grant
DMS-1522604). The authors thank Prof. Chi-Wang Shu at Brown Univer-
sity for stimulating discussions. The coding in this work is based on the
open source finite element library deal.II and we would like to thank all
of its developers. We also acknowledge Advanced Research Computing at
Virginia Tech for providing computational resources and technical support
that have contributed to the results in this paper.

References

[1] S. Osher and J. Sethian, Fronts propagating with curvature dependent
speed: algorithms based on hamilton-jacobi formulations J. Comput.
Phys., vol. 79, pp. 12–49, 1988.

[2] D. Adalsteinsson and J. Sethian, A fast level set method for propagating
interfaces J. Comput. Phys., vol. 118(2), pp. 269–277, 1995.

[3] T. Hou, Z. Li, S. Osher, and H. Zhao, A hybrid method for moving
interface problems with application to the heleshaw flow J. Comput.
Phys., vol. 134(2), pp. 236–252, 1997.

[4] W. Mulder, S. Osher, and J. Sethian, Computing interface motion in
compressible gas dynamics J. Comput. Phys., vol. 100(2), pp. 209–228,
1992.

[5] M. Sussman, P. Smereka, and S. Osher, A level set approach for com-
puting solutions to incompressible two-phase flow J. Comput. Phys.,
vol. 114, pp. 146–159, 1994.

48

[6] J. Sethian, A fast marching level set method for monotonically advanc-
ing fronts Proc. Natl. Acad. Sci., vol. 93 (4), pp. 1591–1595, 1996.

[7] D. L. Chopp, Some improvements of the fast marching method SIAM
J. on Sci. Comput., vol. 23, no. 1, pp. 230–244, 2001.

[8] H. Zhao, A fast sweeping method for eikonal equations Math. Comp.,
vol. 74, pp. 603–627, 2005.

[9] Y.-T. Zhang, H.-K. Zhao, and J. Qian, High order fast sweeping meth-
ods for static hamilton–jacobi equations J. Sci. Comput., vol. 29, no. 1,
pp. 25–56, 2006.

[10] M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and
M. L. Welcome, An adaptive level set approach for incompressible two-
phase flows J. Comput. Phys., vol. 148, no. 1, pp. 81 – 124, 1999.

[11] S. Pillapakkam and P. Singh, A level-set method for computing solu-
tions to viscoelastic two-phase flow J. Comput. Phys., vol. 174, no. 2,
pp. 552 – 578, 2001.

[12] X. Zheng, J. Lowengrub, A. Anderson, and V. Cristini, Adaptive
unstructured volume remeshing – ii: Application to two- and three-
dimensional level-set simulations of multiphase flow J. Comput. Phys.,
vol. 208, no. 2, pp. 626 – 650, 2005.

[13] J.-J. Xu, Z. Li, J. Lowengrub, and H. Zhao, A level-set method for in-
terfacial flows with surfactant J. Comput. Phys., vol. 212, no. 2, pp. 590
– 616, 2006.

[14] C. Li, C. Xu, C. Gui, and M. Fox, Level set evolution without re-
initialization: a new variational formulation. in ieee computer society
conference on computer vision and pattern recognition IEEE Comput.
Soc. Conf. on Comput. Vis. Pattern Recognit., vol. 1, pp. 430–436, 2005.

[15] C. Basting and D. Kuzmin, A minimization-based finite element for-
mulation for interface-preserving level set reinitialization Comput.,
vol. 95(1), pp. 13–25, 2012.

[16] T. Utz, F. Kummer, and M. Oberlack, Interface-preserving level-set
reinitialization for dg-fem Int. J. Num. Meth. Fluid, vol. 84, pp. 183–
198, 2017.

49

[17] F. Gibou, R. Fedkiw, and S. Osher, A review of level-set methods and
some recent applications J. Comput. Phys., 2017.

[18] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, A pde-based
fast local level set method J. Comput. Phys., vol. 155, no. 2, pp. 410 –
438, 1999.

[19] M. Sussman, E. Fatemi, P. Smereka, and S. Osher, An improved level
set method for incompressible two-phase flows Comput. Fluids, vol. 27,
no. 5, pp. 663 – 680, 1998.

[20] M. Sussman and E. Fatemi, An efficient, interface-preserving level set
redistancing algorithm and its application to interfacial incompressible
fluid flow SIAM J. on scientific computing, vol. 20, no. 4, pp. 1165–
1191, 1999.

[21] G. Russo and P. Smereka, A remark on computing distance functions
J. Comput. Phys., vol. 163, no. 1, pp. 51 – 67, 2000.

[22] C. Min, On reinitializing level set functions J. computational physics,
vol. 229, no. 8, pp. 2764–2772, 2010.

[23] A. du Chéné, C. Min, and F. Gibou, Second-order accurate compu-
tation of curvatures in a level set framework using novel high-order
reinitialization schemes J. Sci. Comput., vol. 35, no. 2-3, pp. 114–131,
2008.

[24] D. Hartmann, M. Meinke, and W. Schroder, Differential equation based
constrained reinitialization for level set methods J. Comput. Phys.,
vol. 227(14), pp. 6821–6845, 2008.

[25] D. Hartmann, M. Meinke, and W. Schroder, The constrained reinitial-
ization equation for level set methods J. Comput. Phys., vol. 229, no. 5,
pp. 1514 – 1535, 2010.

[26] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, A hybrid particle
level set method for improved interface capturing J. Comput. Phys.,
vol. 183, no. 1, pp. 83 – 116, 2002.

[27] M. Sussman and E. G. Puckett, A coupled level set and volume-of-fluid
method for computing 3d and axisymmetric incompressible two-phase
flows J. Comput. Phys., vol. 162, no. 2, pp. 301 – 337, 2000.

50

[28] S. P. van der Pijl, A. Segal, C. Vuik, and P. Wesseling, A mass-
conserving level-set method for modelling of multi-phase flows Int. J.
for Numer. Methods Fluids, vol. 47, no. 4, pp. 339–361, 2005.

[29] X. Yang, A. J. James, J. Lowengrub, X. Zheng, and V. Cristini, An
adaptive coupled level-set/volume-of-fluid interface capturing method
for unstructured triangular grids J. Comput. Phys., vol. 217, no. 2,
pp. 364 – 394, 2006.

[30] E. Olsson and G. Kreiss, A conservative level set method for two phase
flow J. Comput. Phys., vol. 210(1), pp. 225–246, 2005.

[31] E. Olsson, G. Kreiss, and S. Zahedi, A conservative level set method
for two phase flow ii J. Comput. Phys., vol. 225, no. 1, pp. 785 – 807,
2007.

[32] D. Jacqmin, Calculation of two-phase navier–stokes flows using phase-
field modeling J. Comput. Phys., vol. 155, no. 1, pp. 96 – 127, 1999.

[33] T. Biben and C. Misbah, Tumbling of vesicles under shear flow within
an advected-field approach Phys. Rev. E, vol. 67, p. 031908, 2003.

[34] M. Owkes and O. Desjardins, A discontinuous galerkin conservative
level set scheme for interface capturing in multiphase flows J. Comput.
Phys., vol. 249, pp. 275 – 302, 2013.

[35] Z. Jibben and M. Herrmann, An arbitrary-order runge–kutta discontin-
uous galerkin approach to reinitialization for banded conservative level
sets J. Comput. Phys., vol. 349, pp. 453 – 473, 2017.

[36] R. Saye et al., High-order methods for computing distances to implicitly
defined surfaces Commun. Appl. Math. Comput. Sci., vol. 9, no. 1,
pp. 107–141, 2014.

[37] B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection dis-
continuous Galerkin finite element method for scalar conservation laws.
II: General framework Math. Comput., vol. 52, pp. 411–435, 1989.

[38] B. Cockburn, S. Y. Lin, and C.-W. Shu, Tvb Runge-Kutta local projec-
tion discontinuous galerkin finite element method for conservation laws
III: one-dimensional systems J. Comput. Phys., vol. 84, pp. 90–113,
1989.

51

[39] B. Cockburn, S. Hou, and C.-W. Shu, The Runge-Kutta local projection
discontinuous Galerkin finite element method for conservation laws. IV:
the multidimensional case Math. Comput., vol. 54, pp. 545–581, 1990.

[40] Y.-T. Zhang and C.-W. Shu, High-order weno schemes for hamilton–
jacobi equations on triangular meshes SIAM J. on Sci. Comput., vol. 24,
no. 3, pp. 1005–1030, 2003.

[41] D. Levy, S. Nayak, C.-W. Shu, and Y.-T. Zhang, Central weno schemes
for hamilton–jacobi equations on triangular meshes SIAM J. on Sci.
Comput., vol. 28, no. 6, pp. 2229–2247, 2006.

[42] C. Hu and C.-W. Shu, A discontinuous galerkin finite element method
for Hamilton-Jacobi equations SIAM J. Sci. Comput., vol. 21, pp. 666–
690, 1999.

[43] F. Li and C.-W. Shu, Reinterpretation and simplified implementation of
a discontinuous Galerkin method for Hamilton-Jacobi equations Appl.
Math. Lett., vol. 18, pp. 1204–1209, 2005.

[44] Y. Cheng and C.-W. Shu, A discontinuous galerkin finite element
method for directly solving the Hamilton-Jacobi equations J. Comput.
Phys., vol. 223, pp. 398–415, 2007.

[45] J. Yan and S. Osher, A local discontinuous galerkin method for directly
solving hamilton-jacobi equations J. Comput. Phys., vol. 239, pp. 232–
244, 2011.

[46] C.-W. Shu, Survey on discontinuous galerkin methods for hamilton-
jacobi equations Contemp. Math., vol. 586, pp. 323–330, 2013.

[47] S. Fechter and C.-D. Munz, A discontinuous Galerkin-based sharp-
interface method to simulate three-dimensional compressible two-phase
flow Int. J. for Numer. Methods Fluids, vol. 78, no. 7, pp. 413–435,
2015.

[48] E. Marchandise, J.-F. Remacle, and N. Chevaugeon, A quadrature-free
discontinuous galerkin method for the level set equation J. Comput.
Phys., vol. 212, pp. 338–357, Feb. 2006.

[49] J. Grooss and J. Hesthaven, A level set discontinuous Galerkin method
for free surface flows Comput. Methods Appl. Mech. Eng., vol. 195,
no. 25, pp. 3406 – 3429, 2006.

52

[50] A. Karakus, T. Warburton, M. Aksel, and C. Sert, A GPU accelerated
level set reinitialization for an adaptive discontinuous Galerkin method
Comput. Math. Appl., vol. 72, no. 3, pp. 755 – 767, 2016.

[51] P. D. M. Spelt, A level-set approach for simulations of flows with mul-
tiple moving contact lines with hysteresis J. Comput. Phys., vol. 207,
pp. 389–404, 2005.

[52] R. F. Ausas, E. A. Dari, and G. C. Buscaglia, A geometric mass-
preserving redistancing scheme for the level set function Int. J. for
Numer. Methods Fluids, vol. 65, no. 8, pp. 989–1010, 2011.

[53] N. Parolini, Computational fluid dynamics for naval engineering prob-
lems PhD thesis, EPFL Lausanne, 2004.

[54] M. Herrmann, A balanced force refined level set grid method for two-
phase flows on unstructured flow solver grids J. Comput. Phys., vol. 227,
no. 4, pp. 2674 – 2706, 2008.

[55] B. Muller, F. Kummer, and M. Oberlack, Highly accurate surface and
volume integration on implicit domains by means of moment-fitting Int.
J. for Numer. Methods Eng., vol. 96, no. 8, pp. 512–528, 2013.

[56] B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous galerkin
method for conservation laws V: multidimensional systems J. Comput.
Phys., vol. 141, pp. 199–224, 1998.

[57] J. Qiu and C.-W. Shu, Runge–Kutta discontinuous Galerkin method
using WENO limiters SIAM J. on Sci. Comput., vol. 26, no. 3, pp. 907–
929, 2005.

[58] J. Zhu, J. Qiu, C.-W. Shu, and M. Dumbser, Runge–Kutta discontinu-
ous Galerkin method using WENO limiters ii: Unstructured meshes J.
Comput. Phys., vol. 227, no. 9, pp. 4330 – 4353, 2008.

[59] J. Zhu, X. Zhong, C.-W. Shu, and J. Qiu, Runge–Kutta discontinuous
Galerkin method using a new type of WENO limiters on unstructured
meshes J. Comput. Phys., vol. 248, pp. 200 – 220, 2013.

[60] S. Gottlieb and C.-W. Shu, Total variation diminishing runge-kutta
schemes Math. Comp., vol. 67, pp. 73–85, 1998.

[61] B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin fi-
nite element methods for convection-dominated problems J. Sci. Com-
put., vol. 16, pp. 173–261, 2001.

53

[62] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II – a general pur-
pose object oriented finite element library ACM Trans. Math. Softw.,
vol. 33, no. 4, pp. 24/1–24/27, 2007.

[63] W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat, M. Kro-
nbichler, M. Maier, B. Turcksin, and D. Wells, The deal.II library,
version 8.4 J. Numer. Math., vol. 24, 2016.

[64] S. Xu and W. Ren, Reinitialization of the level-set function in 3d simu-
lation of moving contact lines Commun. Comput. Phys., vol. 20, no. 5,
pp. 1163–1182, 2016.

[65] G. Della Rocca and G. Blanquart, Level set reinitialization at a contact
line J. Comput. Phys., vol. 265, pp. 34 – 49, 2014.

[66] J. Bell, P. Colella, and H. Glaz, A second-order projection method for
the incompressible navier-stokes equations J. Comput. Phys., vol. 85(2),
pp. 257–283, 1989.

[67] W. Rider and D. Kothe, Reconstructing volume tracking J. Comput.
Phys., vol. 141(2), pp. 112–152, 1998.

[68] P. Gomez, J. Hernandez, and J. Lopez, On the reinitialization proce-
dure in a narrow-band locally refined level set method for interfacial
flows Int. journal for numerical methods engineering, vol. 63, no. 10,
pp. 1478–1512, 2005.

[69] R. J. LeVeque, High-resolution conservative algorithms for advection
in incompressible flow SIAM J. on Numer. Analysis, vol. 33, no. 2,
pp. 627–665, 1996.

[70] C. Min and F. Gibou, A second order accurate level set method on
non-graded adaptive cartesian grids J. Comput. Phys., vol. 225, no. 1,
pp. 300 – 321, 2007.

[71] S. T. Zalesak, Fully multidimensional flux-corrected transport algo-
rithms for fluids J. Comput. Phys., vol. 31, no. 3, pp. 335–362, 1979.

[72] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, and S. Zaleski, Volume-
of-fluid interface tracking with smoothed surface stress methods for
three-dimensional flows J. Comput. Phys., vol. 152, no. 2, pp. 423 –
456, 1999.

54

[73] E. D. Wilkes, S. D. Phillips, and O. A. Basaran, Computational and ex-
perimental analysis of dynamics of drop formation Phys. fluids, vol. 11,
no. 12, pp. 3577–3598, 1999.

[74] C. Zhou, P. Yue, and J. J. Feng, Formation of simple and compound
drops in microfluidic devices Phys. fluids, vol. 18, no. 9, p. 092105, 2006.

[75] T. A. Davis, Algorithm 832: Umfpack v4.3—an unsymmetric-pattern
multifrontal method ACM Trans. Math. Softw., vol. 30, pp. 196–199,
June 2004.

55

