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Abstract

We develop a level-set method in the finite-element framework. The
contact line singularity is removed by the slip boundary condition proposed
by Ren and E [Phys. Fluids 19 (2007) 022101], which has two friction
coefficients: βN that controls the slip between the bulk fluids and the solid
wall and βCL that controls the deviation of the microscopic dynamic contact
angle from the static one. The predicted contact line dynamics from our
method matches the Cox theory very well. We further find that the same
slip length in the Cox theory can be reproduced by different combinations
of (βN , βCL), based on which we come up with a computational strategy
for mesh-independent results that can match the experiments. There is no
need to impose the contact angle condition geometrically, and the dynamic
contact angle automatically emerges as part of the numerical solution. With
a little modification, our method can also be used to compute contact angle
hysteresis, where the tendency of contact line motion is readily available
from the level-set function. Different test cases, including code validation
and mesh-convergence study, are provided to demonstrate the efficiency and
capability of our method.

Keywords: contact angle hysteresis, contact line pinning, slip length, drop
spreading, GNBC, contact line friction

1. Introduction

The moving contact line problem has attracted intensive research in the
past few decades due to its importance in many natural processes and in-
dustrial applications. This problem is difficult due to the stress singularity
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at the contact line caused by the discrepancy between the no-slip bound-
ary condition and the moving interface. In continuum numerical simula-
tions, different models have been adopted to relax the stress singularity,
e.g., Navier slip [1], diffusion (such as those in the Cahn-Hilliard model [2],
conservative level set method [3], and lattice Boltzmann method [4]), and
the generalized Navier boundary condition (GNBC) [5, 6]. The readers are
referred to [7] for a comprehensive review on this topic and we will focus on
the GNBC in this work.

From molecular dynamics (MD) simulations, Qian et al. found that the
slip velocity at the wall was proportional to the sum of the tangential vis-
cous stress and the uncompensated Young’s stress (a.k.a. the unbalanced
Young’s stress), based on which they developed the GNBC [5] in the phase-
field framework. The velocity profiles in the vicinity of the contact line from
their phase-field simulations agreed very well with the MD results. Ren
and E later developed a sharp-interface version of the GNBC [6], which is
no longer restricted to the phase-field method. Their continuum modeling
based on the immersed boundary method compared favorably with the MD
results. Theoretically, the GNBC can also be derived from Onsager’s mini-
mum energy dissipation rate principle [8] or simply from the second law of
thermodynamics [9]. It should be noted that Ren and E’s slip condition is
different from the sharp-interface limit of Qian et al. ’s original GNBC as
given in [10]. We follow Ren and E’s slip condition in this work.

With the support from MD simulations and thermodynamic principles,
the GNBC (including Ren and E’s version) has gained popularity in recent
years. In the phase-field community, the GNBC has been frequently adopted
for contact line problems, e.g., [11, 12, 13, 14, 15]. Meanwhile, the GNBC has
also been adopted in many other numerical methods for interfacial flows. For
example, Gerbeau and Lelièvre incorporated the GNBC into a variational
arbitrary Lagrangian-Eulerian (ALE) formulation which is well suited for
energy stability analysis [16]. Li et al. developed an efficient augmented im-
mersed interface method to implement Ren and E’s slip condition [17]. Ren
and E applied their slip condition to the level-set method and investigated
contact line dynamics on heterogeneous surfaces [18]. This level-set work
was later extended to moving contact lines with insoluble surfactants [19].
Recently, Zhang and Ren also investigated the influence of viscoelasticity on
contact line dynamics using an immersed boundary method combined with
the generalized slip [20]. The implementation of the GNBC in the front-
tracking method can be found in [21]. Most recently, the GNBC was also
extended to the volume-of-fluid method [22, 23].

Although the GNBC has been widely used, it is still challenging to obtain
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mesh-independent results, because the physical slip length is usually at the
nanoscale and can not be resolved by the computational mesh. It has been
rigorously shown in [24] that the GNBC cannot remove the weak singularity
at the contact line. Furthermore, the Ren and E’s slip condition introduces
two friction coefficients (βCL and βN in Section 2.1) rather than a single
slip length, and it is unclear how to choose them for predictive simulations
that can match the experiments. In this work, we aim to address these
issues based on a level-set method. In the literature, a standard treatment
to remove mesh dependency, as proposed in [25, 26, 27, 28], is to determine
a numerical contact angle at the grid scale based on mascroscale models
such as the Cox-Voinov model [29, 30]; this numerical angle is then applied
at the contact line in place of the static contact angle. A drawback of this
method is that it requires the input of contact line velocity, which may
be difficult to obtain, especially in three dimensions. The similar idea was
also used in the GNBC, however, in a different flavor [21, 31]: the grid-
scale contact angle from the simulation is used to determine a microscopic
dynamic contact angle, which is then fed to the GNBC to compute the slip
velocity. In this work, we propose a different approach which does not rely
on hydrodynamic models and is thus much easier to implement. Meanwhile,
by properly choosing the friction coefficients, we will show that the GNBC
itself is sufficient to reproduce the well-established Cox theory [30] with
realistic slip lengths.

Another challenging issue is the contact angle hysteresis, since most solid
surfaces are intrinsically rough or chemically heterogenous. In this case, the
contact line stays pinned when the microscopic dynamic contact angle is
between a receding contact angle θR and an advancing contact angle θA.
The most popular approach for contact angle hysteresis was developed by
Spelt for a level-set method [32]. An intermediate contact angle is obtained
such that the contact line is pinned. If this angle is within the hysteresis
window, the solution is accepted; otherwise, the solution is abandoned and
the contact line is moved with prescribed contact angles. This idea was
later extended to different methods, eg., the phase-field method [33], the
volume-of-fluid method [34], the Lattice Boltzmann method [35], and the
front-tracking method [36]. However, this approach relies on ghost cells
outside the boundary to pin the contact line or to impose the contact angle
condition, which can be challenging on curved boundaries and unstructured
meshes. Recently, we developed a thermodynamically consistent phase-field
model for contact angle hysteresis [37]. Since the dynamic contact angle
is part of the solution instead of being imposed, this method is easy to
implement and automatically captures the pinning, advancing, and receding
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of the contact line. Motivated by [37], we will show that Ren and E’s slip
condition can also be easily modified to capture the contact angle hysteresis.

The rest of this paper is organized as follows. We first introduce the
governing equations and numerical methods in Section 2. We then explain
how to incorporate contact angle hysteresis in Section 3. The numerical
results, including code validation and mesh convergence studies, are given
in Section 4.

2. Level-set method for moving contact line problems

2.1. Governing equations

Consider an incompressible system of two immiscible Newtonian fluids
on an impermeable solid surface, as shown in Fig. 1. We use the level-set
method [38, 39] to track the interface implicitly. The interface is represented
by the zero level set of a signed distance function φ that is evolved by the
the level-set equation

∂φ

∂t
+ u · ∇φ = 0. (1)

The regions with φ > 0 and φ < 0 are occupied by fluid 1 and fluid 2,
respectively.

nt

θD

Fluid 2

φ < 0

Fluid 1

φ > 0y

x

Figure 1: Schematic of a moving contact line on a solid substrate. The (microscopic)
dynamic contact angle θD is defined with respect to fluid 1, which occupies the region
with φ > 0.

Following the level-set literature, the two-phase system can be treated
as a single fluid with density and viscosity given by

ρ(φ) = Hε(φ)ρ1 + (1−Hε(φ))ρ2 (2)

and
µ(φ) = Hε(φ)µ1 + (1−Hε(φ))µ2, (3)
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where

Hε(φ) =


0, if φ < −ε,
1, if φ > ε,
1
2

(
1 + φ

ε + 1
π sin

(
πφ
ε

))
, otherwise

(4)

is a smooth Heaviside function, 2ε is the interface thickness, and the sub-
scripts 1 and 2 denote fluid 1 and 2, respectively.

For the surface tension term, we adopt the tensor form [40]

τφ = σδε(φ)|∇φ|T(nφ), (5)

where σ is the surface tension, δε(φ) = H ′ε(φ) is the smooth Dirac delta
function, nφ = ∇φ

|∇φ| is the unit normal to the interface, and T (nφ) = I −
nφ⊗nφ. It should be noted that a term |∇φ| is included in (5) to deal with
the case where φ deviates from a singed distance function.

The incompressible two-phase flow is governed by the momentum equa-
tion

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · (−pI + τ + τφ) + ρg (6)

and the continuity equation
∇ · u = 0, (7)

where u is the fluid velocity, p is the pressure, τ = µ[∇u + (∇u)T ] is the
viscous stress, and g is the gravitational acceleration.

On the solid wall, we impose the no-penetration condition

n · (u− uw) = 0 (8)

in the normal direction and Ren and E’s slip condition in the tangential
direction, where uw denotes the wall velocity and n is the outward pointing
unit normal to the wall boundary (see Fig. 1). Motivated by the level-set
work in [18], Ren and E’s slip condition can be expressed as

β(φ)us = −
[
n · τ + σδε(φ)

(
cos θS −

∇φ · n
|∇φ|

)
∇φ
]
·T(n), (9)

where us = u − uw is the slip velocity, θS is the prescribed static contact
angle, β(φ) = βN+βCLδε(φ)|∇φ·T(n)|, βN is the friction coefficient between
the Newtonian fluids and the solid wall, and βCL is the the friction coefficient
at the contact line. For any vector a, a·T (n) gives the tangential component
of a in the plane with normal n. Thus the right-hand side of (9) is a force
(per unit area) tangential to the solid wall. This force includes contributions
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from the viscous stress and the unbalanced Young’s stress. It is obvious that
us given by (9) is tangential to the wall since us ·n = 0. At the contact line,
us is simply the contact line velocity relative to the solid wall. It should be
noted that (9) has no limitation on spatial dimensions and it reduces to the
boundary condition in [18] in 2D.

In the limit of vanishing ε, (9) recovers the 3D version of the Navier slip
condition

βNus = −(n · τ ) ·T(n) (10)

away from the contact line (i.e., φ 6= 0) and

βCLus = −σ (cos θS − cos θD)
∇φ ·T(n)

|∇φ ·T(n)|
(11)

at the contact line (i.e., φ = 0), where θD is the microscopic dynamic contact
angle and we have used the geometric relation cos θD = nφ · n = ∇φ·n

|∇φ| . The

term σ (cos θS − cos θD) is exactly the unbalanced [6] Young’s stress. In
a 2D flow as shown in Fig. 1, these two equations reduce to the familiar
formulations in [6, 18]:

βNus = n · τ · t = µ
∂u

∂y
(12)

away from the contact line and

βCLus = σ (cos θS − cos θD) (13)

at the contact line, where us is the slip velocity in x-direction, t is the unit
tangent vector to the wall, and u is the x-component of fluid velocity.

The Navier slip condition (12) determines a slip length ls = µ
βN

. Similar
to viscosity, the phenomenological parameter βN may take different values
in the two fluids, although we will use a single constant in this paper for
simplicity. Equation (13) agrees with the molecular-kinetic theory at the
leading order [41]. It should be noted that βN and βCL have different di-
mensions.

A numerical advantage of Ren and E’s slip condition (9) is that it does
not require us to manually impose the contact angle condition on the ge-
ometry of the interface. Instead, both the slip velocity us and the dynamic
contact angle θD are part of the solution. If the contact line is at static
equilibrium, both viscous stress τ and us vanish and (9) recovers the static
contact angle, i.e., θD = θS . If the contact line moves, then the relation (13)
at the contact line predicts a θD that differs from θS . In particular, θD > θS
if the contact line advances and θD < θS is the contact line recedes.
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In summary, the governing equations include the level-set equation (1)
for the interface and the Navier-Stokes equations (6) and (7) for the flow
field, with the latter supplemented by Ren and E’s slip condition (9).

2.2. Level-set reinitialization

It is preferable that the level-set function φ is a signed distance function
satisfying the Eikonal equation |∇φ| = 1 in simulations. However, in the
process of advection, φ could become too flat or too steep and cause large
errors in computations. To prevent this, the level-set function needs to
be reinitialized to a signed distance function regularly without altering the
position of the interface. There are a lot of methods to achieve this goal and
we use a PDE-based method that is discretized by a discontinuous Galerkin
(DG) method. In the following, we briefly introduce this method and more
details can be found in [42].

The PDE-based method, first proposed by Sussman et al. [39], is to
evolve the Hamilton-Jacobi (HJ) equation

φτ +H(∇φ) = 0 in Ω× [0, T ] , φ(x, 0) = φ0(x) (14)

to steady state, where τ is the pseudo time, φ0 is the initial level-set function,
H(∇φ) = Sη(φ0) (|∇φ| − 1), Sη (φ0) = φ0√

φ20+η2
is a smooth sign function,

and η is a smoothing parameter usually chosen to be the computational
mesh size hmin at the interface. Theoretically, φ shares the same zero level
set with φ0 and achieves |∇φ| = 1 at the steady state. Instead of solving
(14) for φ directly, we solve for ∇φ first and then recover φ based on the
exact location of the zero level set, as described in the following.

Let φh is an approximation of φ in a finite dimensional DG space. In
each computational cell K, we have

φh =
m∑
i=0

civi,

where ci’s are unknown coefficients, vi’s are basis polynomials, and m is the
number of degrees of freedom. We choose Legendre polynomials such that
v0 is a constant. For convenience, we set v0 = 1. Then the solution φ can
be constructed based on

∇φh =
m∑
i=1

ci∇vi

and an additive constant c0.
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Let Ip be the set of interface cells with sufficient length of interface inside.
We first compute ∇φh in these interface cells by a weighted local projection
(WLP) method. In each cell K ∈ Ip, we obtain ∇φh by minimizing the
functional

1

2

∫
K

(
∇φh −

∇φ0

|∇φ0|

)2

δ̄ξ(φ0)dx +
λ

4

∫
K

(
|∇φh|2 − 1

)2
dx, (15)

where λ is a positive penalty parameter that enforces |∇φh| = 1. δ̄ξ is
a shifted smooth delta function defined as δ̄ξ(φ) = δξ(φ) + ξ1, where the
half bandwidth ξ is usually a fraction of hmin and ξ1 is a small positive
parameter to avoid singular matrices. The nonlinear system after finite-
element discretization is solved by Newton’s method. Projecting ∇φ0 is
more accurate than projecting φ0, since φ0 varies along the normal direction
to the interface while ∇φ0 is nearly constant.

We then compute ∇φh in all other cells by solving the gradient of (14)

∂∇φ
∂τ

+∇H(∇φ) = 0, in Ω× [0, T ] , ∇φ(x, 0) = ∇φ0(x), (16)

as a conservation law system using a DG method following [43]. It should
be noted the Lax-Friedrichs flux can not efficiently dissipate away the jump
in the tangential component of ∇φ on cell edges. We therefore constructed
a hybrid numerical flux that combines the local Lax-Friedrichs flux and the
penalty flux in [42].

Now we only need to find c0 in each cell to fully recover φh. This is done
in two steps. We first compute c0 in all interface cells based on the interface
location. In each interface cell, we find the intersections of φ0 = 0 with the
cell edges and solve a least squares problem to determine the optimal c0

such that the resulting φh = 0 intersects the cell edges at almost the same
intersections. This operation preserves the location of the zero level set.
We then compute c0 in all non-interface cells based on the continuity of φh
between neighboring cells. More specifically, c0 in each cell is determined
based on its upwind neighbor. This requires the c0 to be updated following
the characteristics such that the upwind cells are always computed before
their downwind neighbors.

This reinitialization method preserves interface very well and can achieve
high-order accuracy. Another advantage of this method is the simple treat-
ment of boundary conditions for contact line problems. When an interface
intersects with a solid wall, boundary conditions are required for reinitial-
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ization on the wall portion where

Sη(φ0)
∇φ
|∇φ|

· n < 0.

Since we compute ∇φh directly, we only need to supply a Dirichlet condition
for ∇φ based on the contact angle, which is much easier than the boundary
condition for φ.

2.3. Weak form of Navier-Stokes equations

In this subsection, we derive the weak form of the Navier-Stokes equa-
tions (6) and (7) supplemented with Ren and E’s slip condition (9).

Assume that the domain boundary ∂Ω can be partitioned into three
parts based on boundary conditions: ∂ΩD where the Dirichlet condition
u = ub is imposed, ∂ΩN where the traction condition (natural boundary
condition) is imposed, and the solid wall ∂Ωw where the no-penetration
condition and redRen and E’s slip condition are imposed. We seek the weak
solution (u, p) ∈ U × P, with solution spaces

U = {u ∈ H1(Ω)d : u = ub on ∂ΩD,u · n = uw · n on ∂Ωw}, (17)

and
P = L2(Ω)d, (18)

where d denotes the spatial dimension of the flow. The corresponding test
spaces are

U0 = {u ∈ H1(Ω)d : u = 0 on ∂ΩD,u · n = 0 on ∂Ωw}, (19)

and P, respectively.
Taking the inner product of (6) with the test function v ∈ U0 and the

inner product of (7) with q ∈ P in Ω, we obtain the weak form(
ρ

(
∂u

∂t
+ u · ∇u

)
,v

)
= (n · (−pI + τ + τφ) ,v)∂Ω

+ (p,∇ · v)− (τ + τφ,∇v) + (ρg,v), ∀v ∈ U0 (20)

and
(∇ · u, q) = 0, ∀q ∈ P, (21)

where (·, ·) denotes the inner product in Ω and (·, ·)∂Ω denotes the inner
product on ∂Ω.
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The boundary inner product on the right-hand side of (20) can be further
written as

(n · (−pI + τ + τφ) ,v)∂Ω (22)

= (n · (−pI + τ + τφ) ,v)∂Ωw
(23)

= (−np+ n · τ + σδε(φ)|∇φ|n · (I− nφ ⊗ nφ),v)∂Ωw
(24)

= (n · τ − σδε(φ)(n · nφ)∇φ,v)∂Ωw
, (25)

where we have used v = 0 on ∂ΩD and zero traction n · (−pI + τ + τφ) = 0
on ∂ΩN in the first equality, and n ·v = 0 on ∂Ωw in the third equality. Here
we consider zero traction for simplicity and an additional boundary inner
product should be considered if the traction on ∂ΩN is nonzero. Considering
Ren and E’s slip condition (9), Eq. (20) can be further written as(

ρ

(
∂u

∂t
+ u · ∇u

)
,v

)
+β(φ) (u− uw,v)∂Ωw

= − (σδε(φ) cos θS∇φ,v)∂Ωw

+ (p,∇ · v)− (τ + τφ,∇v) + (ρg,v), ∀v ∈ U0. (26)

The weak solution (u, p) can be found by solving (26) and (21).

2.4. Numerical methods

The governing equations are solved by the finite element method on
a quadrilateral mesh with hierarchical adaptive mesh refinement based on
the open-source deal.II library [44, 45]. Due to different natures of these
equations, we solve the level-set equation and the Navier-Stokes equations
separately with the former solved by DG and the latter solved by the mixed
finite element method.

We focus on 2D problems. Consider a triangulation Th, consisting of
non-overlapping quadrilaterals, of the computational domain Ω. We define
the discontinuous finite-element space

V N
D = {φ : φ ∈ PN (K),∀K ∈ Th} (27)

and continuous finite-element space

V N
C = {φ ∈ C0(Ω) : φ ∈ QN (K), ∀K ∈ Th}, (28)

where N denotes the polynomial degree. In this work, we take N = 3 for φ,
N = 2 for u, and N = 1 for p. The finite dimensional solution spaces for φh,
uh, and ph are Fh = V 3

D, Uh =
(
V 2
C

)2 ∩U , and Ph = V 1
C , respectively, where
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we have used the subscript h to denote finite-dimensional approximations.
The test space for uh is simply Uh,0 =

(
V 2
C

)2 ∩ U0.
Since the flow is incompressible, the level-set equation (1) can be written

as a conservation law
∂φ

∂t
+∇ · (uφ) = 0. (29)

In each element K, by taking the inner product of (29) with the test function
ψ ∈ Fh and performing integration by parts, we obtain the weak formulation(

∂φh
∂t

, ψ

)
K

+
(
Ĥ(φ−h , φ

+
h ), ψ

)
∂K
− (uhφh,∇ψ)K = 0, ∀ψ ∈ Fh, (30)

where Ĥ(φ−h , φ
+
h ) denotes the numerical flux that approximates n · uhφh,

φ−h and φ+
h are the inside and outside values of φh on the element boundary

∂K, and n is the outward pointing unit normal to ∂K. We use the local
Lax-Friedrichs flux

Ĥ(φ−h , φ
+
h ) = n · uh

φ−h + φ+
h

2
− α

2
(φ+
h − φ

−
h ), (31)

where α = max(|n·uh|) and the maximum is taken over the relevant element
edge. The semi-discrete weak form (30) is integrated by the third-order total
variation diminishing (TVD) Runge-Kutta (RK) method [46] to advance
φnh to φn+1. To decouple uh from φh, the uh values at intermediate time
levels between tn and tn+1, which are required by the TVD RK method, are
obtained by explicit extrapolations from un−1

h and unh. Note that we choose
the third-order TVD RK for the sake of stability rather than accuracy, and
the overall scheme is only second-order accurate in time.

The discontinuous solution φh cannot be differentiated. We thus map it
to a continuous function φC ∈ V 3

C by least squares before feeding it to flow
equations:

(φC − φh, ψ) = 0, ∀ψ ∈ V 3
C . (32)

The flow equations (26) and (21) are discretized by the Crank-Nicolson

scheme. In each time step, we seek the weak solution (un+1
h , p

n+ 1
2

h ) ∈ Uh×Ph
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satisfying the discretized weak form(
ρ(φ

n+ 1
2

C )

(
un+1
h −unh

∆t + u∗h · ∇u
n+ 1

2
h + 1

2(∇ · u∗h)u
n+ 1

2
h

)
,v

)
+ β(φ

n+ 1
2

C )

(
u
n+ 1

2
h − uw,v

)
∂Ωw

= −
(
σδε(φ

n+ 1
2

C ) cos θS∇φ
n+ 1

2
C ,v

)
∂Ωw

+

(
p
n+ 1

2
h ,∇ · v

)
−
(
µ(φ

n+ 1
2

C )(∇un+ 1
2

h + (∇un+ 1
2

h )T ),∇v
)

−
(
σδε(φ

n+ 1
2

C )

∣∣∣∣∇φn+ 1
2

C

∣∣∣∣ (I− n
n+ 1

2
φ ⊗ n

n+ 1
2

φ ),∇v
)

+(ρ(φ
n+ 1

2
C )g,v), ∀v ∈ Uh,0

(33)

and
−(∇ · un+1

h , q) = 0, ∀q ∈ Ph, (34)

where u
n+ 1

2
h =

unh+un+1
h

2 , φ
n+ 1

2
C =

φnC+φn+1
C

2 , n
n+ 1

2
φ =

∇φ
n+1

2
C∣∣∣∣∇φn+1

2
C

∣∣∣∣ , and u∗h is an

explicit approximation of un+ 1
2 by a linear extrapolation from unh and un−1

h .
Here we have adopted the skew-symmetric form for the convection term and
the scheme is unconditionally stable if the density is a constant.

Thanks to the explicit approximation u∗h, Eqs. (33) and (34) lead to a
linear saddle point problem:[

A BT

B 0

] [
U
P

]
=

[
F
0

]
, (35)

where U and P are solution vectors for un+1
h and p

n+ 1
2

h , respectively. The
asymmetric square block A comes from (33) excluding the pressure term
while the non-square block B comes from (34). In this paper, we only con-
sider two dimensional problems. The size of the resulting matrix is relatively
small, and we solve (35) by the direct sparse linear solver UMFPACK [47].

In each time step, the solution procedure can be summarized as follows:

(i) Check the mesh and the interface. If necessary, perform local refine-
ment and coarsening such that the interface region is covered by the
finest mesh and bulk region is covered by the coarsest mesh. Transfer
data from the old mesh to the new mesh if the mesh is altered.

(ii) Based on unh, un−1
h , and φnh, solve (30) to obtain φn+1

h .

(iii) Reinitialize φn+1
h to a signed distance function if necessary.

(iv) Map φn+1
h to φn+1

C in the continuous finite space by solving (32).
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(v) Based on unh, un−1
h , φnC , and φn+1

C , solve the linear system of (33) and

(34) to obtain un+1
h and p

n+ 1
2

h .

3. Contact angle hysteresis

With the contact angle hysteresis, the contact line remains pinned for a
range of contact angles, the minimum of which is referred to as the receding
contact angle θR and the maximum is referred to as the advancing contact
angle θA. The contact line advances if θD > θA, recedes if θD < θR, and is
pinned if θR ≤ θD ≤ θA.

When the contact line moves, we can still use the method in the previous
section with θS replaced by θA for the advancing contact line and by θR for
the receding contact line. Special treatment is needed when the contact line
is pinned. In this case, the no-slip condition us = 0 is required at the contact
line. To make this condition consistent with (9), we adopt the formula

β(φ)us = −(n · τ ) ·T(n), (36)

which recovers the no-slip condition at φ = 0 while still maintaining the
Navier slip condition away from the contact line. Thus it provides a smooth
transition between the pinned and moving contact lines. With (36) in place
of Ren and E’s slip condition, the weak form of the momentum equation
(26) is updated to(

ρ

(
∂u

∂t
+ u · ∇u

)
,v

)
+β(φ) (u− uw,v)∂Ωw

= −
(
σδε(φ)

∇φ · n
|∇φ|

∇φ,v
)
∂Ωw

+ (p,∇ · v)− (τ + τφ,∇v) + (ρg,v), ∀v ∈ U0. (37)

when the contact line is pinned. It should be noted that the only difference
between this equation and (26) is the first term on the right-hand side: cos θS
in the inner product on ∂Ωw is now replaced by cos θD = ∇φ·n

|∇φ| .

The relation between θD and (θR, θA) can be inferred from φ. Motivated
by the phase-field method for hysteresis in [37], we define

F (θ) =

∫
e
δε(φ)

(
cos θ − ∇φ · n

|∇φ|

)
dS, (38)

where e is an element edge (element face in 3D) in the neighborhood of the
contact line on ∂Ω. Obviously, θD > θ if F (θ) > 0 and θD < θ if F (θ) < 0.
Then the status (advancing, receding, or pinned) of the contact line can be
determined from the signs of F (θA) and F (θR).

13



In the first term on the right-hand side of the discretized weak form
(33), we need to perform integration on the boundary edges on ∂Ωw. The
contact angle hysteresis can be incorporated with a little modification to
this boundary integral. For each element edge e on ∂Ωw, we first evaluate

F (θA) and F (θD) with φ = φ
n+ 1

2
C in (38), and then proceed as follows with

boundary inner product in (33):

• If F (θA) > 0, then θD > θA and the contact line advances. Set θS =
θA.

• If F (θR) < 0, then θD < θR and the contact line recedes. Set θS = θR.

• Otherwise, θA ≥ θD ≥ θR and the contact line is pinned. Set cos θS =

∇φ
n+1

2
C ·n∣∣∣∣∇φn+1

2
C

∣∣∣∣ , i.e., θS = θD.

Since θA > θD, we have cos θA < cos θD and the third case corresponds to
F (θR) ≥ 0 ≥ F (θA). These operations are performed on all boundary edges
on ∂Ωw; but only the boundary integral on the edges in the contact line
region, i.e., where δε(φ) is non-zero, is affected. All the other operations
remain the same as those in Section 2.4. Thus, the contact angle hysteresis
can be easily included in the formulation for moving contact line problems.

In our method, no matter whether the contact line is pinned or not, the
dynamic angle θD is computed from the momentum equation and thus the
momentum balance is automatically satisfied. There is no need to use any
special technique as in [34] to determine θD that satisfies local momentum
balance when the contact line is pinned.

It should be noted that βCL for the pinned contact line essentially plays a
role of penalty parameter to enforce the no-slip condition. Thus, in order to
achieve a good pinning performance, we may need to choose a large enough
βCL for the pinned contact line. In other words, we need a large contact
line friction to resist contact line motion and thus pin the contact line.

4. Numerical results and discussions

We consider six test cases. We first validate the interfacial flow part of
our code by computing a bubble rising problem. In the test case of an ad-
vancing interface in plane Poiseuille flow, we systematically investigate the
use of Ren and E’s slip condition in moving contact line problems includ-
ing mesh convergence and parameter justification. In the test case of drop
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spreading, we come up with a computational strategy for predictive simula-
tions. In the test case of a pinned drop in plane Poiseuille flow, we validate
the capability of our method in pinning the contact lines. In the test case of
advancing and receding interfaces in plane Poiseuille flow, we demonstrate
that our method correctly captures the transition between pinning and mov-
ing. Finally, in the test case of sliding drop on an inclined wall, we further
demonstrate the capability of our method in capturing hysteresis. All the
parameters are dimensionless except for the bubble rising problem.

4.1. Bubble rising
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Figure 2: Illustration of the adaptive mesh refinement. The left panel shows the mesh
around the bubble while the right panel shows a close-up view at the rim of the bubble.
The thick solid (red) line in the right panel denotes the interface, i.e., the φ = 0 level set.

Hnat and Buckmaster conducted experiments with spherical-cap air bub-
bles rising in incompressible liquids to study the steady-state shapes and
terminal velocities [48], wherein the results were reproduced numerically by
many others [49, 50, 51, 52, 53] for code validation. In this numerical test,
we will use the experiment of Fig. 1a in [48] with the following parameters:
liquid density ρl = 0.8755 g cm−3, gas density ρg = 0.001 g cm−3, liquid
viscosity µl = 1.18 P, gas viscosity µg = 0.01 P, surface tension σ = 32.2
dyn cm−1, gravitation acceleration g = 980 cm s−2, and bubble radius
R0 = 0.61 cm. Due to axisymmetry, we only compute the right half of the
meridian plane. In the r-z plane, the computational domain is a rectangle
of (0, 8R0) × (0, 30R0) and the initially spherical bubble is released from
(0, 5R0). We use an adaptive mesh with minimum mesh size hmin = R0

64 at
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the interface and maximum mesh size hmax = R0 far away from the bubble,
as shown in Fig. 2. The half-width of the interface is taken to be ε = 1.5hmin.

Our numerical results are displayed in Fig. 3. The bubble shape and
the wake structure at the steady state are in good agreement with the ex-
periment, as shown in Fig. (3a). We also keep track of the instantaneous
velocities at the top and the bottom of the bubble, which are shown in Fig.
(3b). The steady-state velocity in our numerical test, which is 21.89 cm s−1,
is slightly larger than 21.5 cm s−1 reported by the experiments. We note
that a similar terminal speed, 21.90 cm s−1, was obtained in [50].
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Figure 3: The steady-state bubble shape (a) and the instantaneous velocities at the top
and the bottom of the bubble (b). The left half of (a) is the experimental image adapted
from [48].

4.2. Advancing interface in plane Poiseuille flow
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Fluid 2Fluid 1

Figure 4: schematic of an advancing interface in plane Poiseuille flow.

We consider the steady plane Poiseuille flow of two immiscible fluids with
identical viscosity µ. Inertia is neglected. The frame is fixed to the inter-
face, i.e., the walls are moving horizontally with constant speed U while the
interface is stationary. In the following, all numbers are made dimensionless
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by channel half width W , surface tension σ, and fluid viscosity µ, unless
otherwise specified. Under this normalization, we have W = σ = µ = 1.
Since the flow is symmetric, we only compute the lower half of the channel.
The computational domain is a rectangle of (0, 8)× (0, 1) in the x-y plane,
with y = 0 being the moving wall and y = 1 being the axis of symmetry,
as shown in Fig. 4. We run the simulation with an initially flat interface at
x = 4 until a steady state is achieved. The capillary number is defined as
Ca = µU/σ. We first investigate mesh convergence of our method and then
analyze the variables that affect contact line dynamics.

4.2.1. Mesh convergence

Mesh convergence is crucial to all predictive numerical simulations. This
task gets more challenging with a moving contact line: the slip length has
to be well resolved to produce mesh-independent results [54, 32, 25]. It
should be noted that all mesh-based numerical results cannot be exactly
mesh-independent. We borrow this term “mesh-indepenet” from [25] to
denote that the results are insensitive to the mesh size. There are three
microscopic length scales: mesh size hmin, (half) thickness of the interface ε,
and slip length ls. Here, only ls is physically relevant and the other two are
numerical. Our goal is to find a way to generate results that are independent
of hmin and ε.
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Figure 5: Mesh convergence for a fixed interface thickness. The inset is a close-up view at
the contact line. ε = 1.5

128
, βN = 100 (such that ls = 0.01), βCL = 1, Ca = 0.03, θS = 90◦.

These lengths define two independent dimensionless groups, eg., hmin
ε

and ε
ls

. We first investigate hmin
ε , i.e., how to choose mesh size to achieve

mesh convergence for a given interfacial thickness. We fix the interfacial
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thickness at ε = 1.5
128 , and conduct simulations with hmin = 1

32 ,
1
64 , · · · ,

1
512 ,

which corresponds to ε
hmin

= 0.375, 0.75, · · · , 6. The slip length is taken
to be ls = 0.01, which is well resolved by ε as explained later. We can
easily see the convergence in the steady-state interface profile, as shown in
Fig. 5, as hmin reduces. The curves of hmin = 1

256 and 1
512 overlap; the

errors are negligible even for hmin = 1/128 and hmin = 1/64. The result gets
unsatisfactory when the mesh is coarsened to hmin = 1

32 . We thus come to
the first criterion for sufficient accuracy:

hmin

ε
≤ 4

3
. (39)
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(a) ls = 0.01 (βN = 100)
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Figure 6: Mesh convergence at fixed ls and hmin
ε

. The insets are close-up views at the
contact line. ε = 1.5hmin, Ca = 0.03, θS = 90◦.

βCL = 1 βCL = 4 βCL = 8

hmin H Er H Er H Er
1/64 0.2373 6.76% 0.2893 4.26% 0.3444 2.96%
1/128 0.2249 1.17% 0.2806 1.13% 0.3364 0.56%
1/256 0.2235 0.54% 0.2778 0.11% 0.3356 0.34%
1/512 0.2223 0 0.2775 0 0.3345 0

Table 1: Relative errors in the height of the spherical cap shaped interface. ε = 1.5hmin,
Ca = 0.03, θS = 90◦, βN = 100. The height H is the distance in the x direction measured
from the contact line to the apex of the interface. Er is the relative error in H, where we
have used the solution at hmin = 1

512
as the reference.
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We next investigate ε
ls

, i.e., the sharp-interface limit with respect to ε

when ls is fixed. We keep hmin
ε = 1

1.5 fixed while refining mesh, such that
ε is always well resolved. We test βN = 100 and 200, which correspond to
ls = 0.01 and 0.005, respectively, as illustrated in Fig. 6. The detailed errors
for βN = 100 are given in Table 1. Curves with different βCL show that
this parameter does not affect mesh convergence. Convergence is achieved
if hmin ≤ 1

128 for ls = 0.01 and hmin ≤ 1
256 for ls = 0.005. It is tempting

to conclude a convergence criterion based on hmin
ls

. However, the curve of

hmin = 1
64 and ε = 1.5

128 in Fig. 5 shows much better convergence than that of
hmin = 1

64 and ε = 1.5
64 in Fig. 6(a), which suggests ε

ls
to be a better choice.

We thus have the second criterion for sufficient accuracy:

ε

ls
≤ 150

128
. (40)

In summary, we should choose the mesh size and the interface thickness
according to hmin . ε . ls to obtain numerical results that are independent
of hmin and ε. This looks very similar to the criterion for the sharp-interface
limit in the phase-field method [55]. The advantage of the level-set method is
that it does not require a lot of mesh cells across the narrow-band interface.
In the rest of this paper, we conservatively choose ε = 1.5hmin as suggested
in [39] and make sure ls ≥ 1.28hmin.

4.2.2. Contact line dynamics

The contact line dynamics in Ren and E’s slip condition is controlled by
βN , βCL, and θS . The effect of θS is well understood, but it is still unclear
how βN and βCL quantitatively affect contact line dynamics. Here we try
to answer this question by comparing with the well-established Cox theory
[30].

According to the matched asymptotic analysis by Cox, to the leading
order, the apparent contact angle θapp and the static contact angle θS are
connected by

g(θapp) = g(θS) + Ca ln(L/Ls) (41)

due to viscous bending of the interface. Here Ls is the slip length that char-
acterizes the inner region of the contact line and L is characteristic length
of the macroscopic flow. Note that this Ls is a “physical” scale associated
with the contact line and may be different from the ls. To distinguish these
two length scales, we refer to Ls as the effective slip length and ls as the
numerical slip length hereafter. For the plane Poiseuille flow, we can simply
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take L = W . The function g is given by

g(θ) =

∫ θ

0

dθ

f(θ)
(42)

where

f(θ, rµ) =
2 sin θ{r2µ(θ2−sin2 θ)+2rµ[θ(π−θ)+sin2 θ]+[(π−θ)2−sin2 θ]}
rµ(θ2−sin2 θ)[(π−θ)+sin θ cos θ]+[(π−θ)2−sin2 θ](θ−sin θ cos θ)

(43)

and rµ is the viscosity ratio between the receding and advancing fluids.
We first study the influence of Ca on θapp and θD. Here θapp is deter-

mined by fitting a circle to the deformed interface [56, 55] and θD is directly
measured from the φ = 0 level curve at the contact line. The results for
various combinations of (βN , βCL) with fixed θS = 90◦ are shown in Fig. 7.
Figure 7(a) confirms that g(θapp) is linear in Ca, in accordance with the Cox
theory (41). Not surprisingly, g(θD) is also a linear function of Ca, consis-
tent with the numerical observation in [6] as well as the molecular-kinetic
theory [57]. It should be noted that g(θS) = 0.1921, which is exactly the
y−intercept of both g(θapp) and g(θD).
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Figure 7: Dependence of g(θapp) and g(θD) on Ca for different (βN , βCL). θS = 90◦. The
k values are the slopes of the linear fits.

This linear behavior is also observed for different θS , as shown in Fig. 8.
According to (41), the slope of the g(θapp)–Ca curve is only dependent on
Ls and is independent of θS . This is confirmed by Fig. 8(a) with acceptable
errors: the slopes have an average of 3.4 and a standard deviation of 0.3.
The largest deviation from the average is observed for θS = 120◦, possibly
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because θapp is too close to 180◦ and the circle fitting is more prone to nu-
merical errors due to a larger interface deformation. Similar linear behavior
is also observed for g(θD), as shown in Fig. 8(b), with an average slope of
1.31 and a standard deviation of 0.09.
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Figure 8: Dependence of g(θapp) and g(θD) on Ca for different θS . βN = 100, βCL = 1.

The results in Figs. 7 and 8 suggest that both θapp and θD can fit in the
relation

g(θ) = g(θS) + Cak, (44)

where k is dependent on both βN and βCL but independent of θS . Com-
paring with (41), we can see that βN and βCL work together to determine
the effective slip length Ls that controls the dynamics of θapp. For exam-
ple, in Fig. 7(a), the slope k = 2.91 for (βN , βCL) = (50, 1) correspond to
Ls
W = 0.055, and the slope k = 5.21 for (βN , βCL) = (100, 8) corresponds to
Ls
W = 0.0055.

Since both θapp and θD satisfy (44), it follows that

g(θapp) = g(θD) + Ca k̃, (45)

for some constant k̃, which is easily confirmed by numerical results. It is,
however, surprising to note that this k̃ is independent of βCL, as shown in
Fig. 9. That is, βCL has nothing to do with viscous bending. The data

points for βCL = 1 indicate that k̃ ≈ 0.52 ln
(
W
ls

)
, where ls = µ

βN
. We

do not have any good explanation on the prefactor for now and will leave
further investigation for future work.
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Figure 9: g(θapp) − g(θD) as a function of Ca. θS = 90◦.

In summary, βN and βCL both affect the deviation of θD from θS , while
only βN controls the viscous effect that bends the interface from θD at the
wall to θapp at the macroscopic scale. It is the cooperation of βN and βCL
that determines the effective slip length Ls.

4.3. Drop spreading and computational strategy

In this subsection, we simulate two cases of drop spreading with different
initial contact angles. Inertia is again neglected. The computational setup
is illustrated in Fig. 10. The flow is axisymmetric and we only compute the
right half of the median plane.

4.3.1. Comparison with the Cox theory

In the first test case, we consider the spreading of an initially hemispher-
ical drop with radius R0 = 0.5. We take θS = 60◦. The spreading radius
will be directly compared with the theoretical results in [58].

If we assume the drop to be a spherical cap, which is a reasonable ap-
proximation for Ca� 1, the spreading radius a can be written as a function
of θapp based on volume conservation:

a =

(
3Vd
π

)1/3 sin θapp

(2− 3 cos θapp + cos3 θapp)1/3
, (46)

where Vd is the volume of the drop. The the final spreading radius af can be
predicted based on the static contact angle θS and the initial contact angle
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Figure 10: Computational setup for drop spreading simulations. The computation domain
is a square of 4R0 × 4R0 with the wall located at z = 0.

θ0 [58]:

af
a0

=

[(
2− 3 cos θ0 + cos3 θ0

)
sin3 θS

(2− 3 cos θS + cos3 θS) sin3 θ0

]1/3

, (47)

where a0 is the initial spreading radius. For the hemispherical drop con-
sidered here, we have a0 = R0 and θ0 = 90◦ and the equation above gives
af
R0

= 1.276186 for θS = 60◦, which is confirmed by our numerical results in
Figs. 12.
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Figure 11: Mesh convergence for the drop spreading problem. θS = 60◦, rµ = 0.01,
βN = 100, βCL = 1, ε = 1.5hmin.
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hmin af/R0 Relative
error

convergence
order

1/64 1.275312 6.85E-04 -
1/128 1.275458 5.70E-04 0.26
1/256 1.275830 2.79E-04 1.03
1/512 1.276010 1.38E-04 1.02

Table 2: Maximal spreading radius at different levels of mesh refinement. θS = 60◦,
rµ = 0.01, βN = 100, βCL = 1, ε = 1.5hmin.

The mesh convergence results for this transient problem are shown in
Fig. 11. The different spreading curves converge as the mesh refines. The
final spreading radii are given in Table 2, which indicates a first order con-
vergence. This is expected due to the smooth Dirac delta function δε(φ) in
the formulation.

It was reported in [58] that the influence of gas viscosity is negligi-
ble for rµ ≤ 0.01. We verify this by computing spreading with rµ =
1, 0.1, · · · , 0.0001, and the numerical results are given in Fig. 12(a). It is
obvious that the spreading curves with rµ ≤ 0.01 are indistinguishable. In
the following simulations will simply use rµ = 0.01 for gas-liquid systems.
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Figure 12: Spreading of a hemispherical drop with θS = 60◦. In (a), we vary the viscosity
ratio rµ while keeping βN = 100 and βCL = 1 fixed. In (b), we vary βN and βCL while
keeping rµ = 0.01 fixed. The solid lines in (b) are theoretical curves based on the Cox
theory with Ls labeled in the plot and L = a0. The finest mesh size is set to hmin = 1

128

and 1
256

for βN = 100 and 200, respectively.

Based on the Cox theory, Wörner et al. [58] derived analytical equations
to predict the a ∼ t curves of spherical-cap shaped drops. The effective
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slip Ls of the moving contact line can thus be determined by matching
the theoretical and the actual spreading curves. The spreading curves with
different (βN , βCL) values are given in Fig. 12(b). First of all, the theoretical
curves match the numerical ones very well if a proper Ls is chosen. Thus our
level-set method with Ren and E’s slip condition agrees with the Cox theory.
Meanwhile, the same Ls can be reproduced by multiple choices of (βN , βCL).
This indicates that βCL can be used to compensate βN in controlling the
effective slip Ls, and further motivates the following computational strategy.
The overlap of transient curves with different (βN , βCL) also suggests that
different choices of (βN , βCL) are able to produce the same amount of contact
line dissipation.

4.3.2. Computational strategy

We propose the following computational strategy for mesh-independent
and predictive numerical simulations of moving contact line problems. First,
choose an affordable mesh size hmin. Then, determine interface thickness ε &
hmin and numerical slip ls & ε such that the results are mesh-independent.
The friction coefficient βN can be computed from ls. Finally, adjust βCL to
produce the desired Ls. A larger βCL is required to produce a smaller Ls.

This strategy is similar to that proposed by Yue and Feng for the phase-
field method [59]. Unfortunately, we could not obtain a qualitative formula
similar to that in the phase-field method to guide the choice of βCL yet.
This will be an important part of our future work. For now, we leave βCL
as a fitting parameter that needs to be calibrated based on experiments or
other results, similar to that in [60]. Once calibrated, our method will be
able to predict the correct contact line dynamics for a wide spectrum of
contact line velocities and flow geometries, as long as the two fluids and the
solid surface remain the same.

4.3.3. Comparison with experiment

In this test case, we compare our results with the experimental data on
drop spreading by Zosel [61]. This also serves as an example on the usage
of our computational strategy.

In the experiments, solutions of polyisobutylene in decaline with a range
of concentrations were tested. It was observed that all experimental data
fall onto a master curve if the dimensionless spreading radius a

R0
is plotted

against the dimensionless spreading time tσ
µ1R0

. We choose the data points
for pure polyisobutylene, which have the widest coverage on the whole mas-
ter curve. Although θS was reported to be about 58 to 60◦ in the exper-
iments, the final spreading radius, which is about

af
R0

= 1.69, suggests a
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smaller angle θS = 54◦ based on (46). We thus take θS = 54◦ in our simula-
tions. The drop is initially spherical with a radius R0 = 0.5 and a center at
(0, 0.48), such that the inner rim of the narrow-band interface just touches
the wall. We set the viscosities to µ1 = 1 and µ2 = 0.01.

Following the proposed computational strategy, we first set hmin = 1
128

and ε = 1.5hmin. Then we pick βN = 100 such that ls = µ1
β = 0.01 can be

resolved by hmin and ε. Finally, we tune βCL to match experimental data.
The spreading curves with different βCL are given in Fig. 13. The curves
with βCL = 0.5 and βCL = 1 match the experimental curve the best. For the
typical drop size R0 ∼ 1 mm in the experiment [61], these (βN , βCL) pairs
roughly correspond to an effective slip of Ls ∼10 µm. Once we identify the
(βN , βCL) pair for the liquid-gas-solid system, it can be used to predict the
contact line dynamics under other flow conditions.
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Figure 13: Comparison of drop spreading with experiment. The symbols are the the
experimental data for the spreading of polyisobutylene on polytetrafluoroethylene [61].
βN = 100 ,hmin = 1/128, ε = 1.5hmin, θS = 54◦.

It should be noted that our numerical curves can not match the exper-
imental data exactly: the experimental data demonstrate a lower slope in
the semi-log plot. The same trend was also observed in other numerical
simulations [62, 63, 64]. This consistent discrepancy is probably because of
the constant-coefficient assumptions in the contact line models. Maybe the
friction coefficients βN and βCL (or the slip length) should be functions of
the contact line velocity. Further investigation is beyond the scope of this
paper.
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4.4. Pinned drop in Poiseuille flow

We test the capability of our method in pinning contact lines by com-
paring with the boundary integral method [65]. A cylindrical-cap droplet,
with an area of 0.5, is initially placed on a solid surface with contact angle
θ = π/3, as shown in Fig (14). The droplet is sheared by a pressure-driven
flow with contact lines pinned. The capillary number is subcritical such that
the drop eventually achieves a steady deformation. The flow is inertialess
with µ1 = µ2 = 1 and σ = 1. We impose a large hysteresis window [1◦, 179◦]
such that the contact lines are pinned on the wall. The computational do-
main is a rectangle of dimensions (0, 8)× (0, 2). On the left boundary x = 0,
we impose the inflow condition u = [u, 0]T with

u =
3

2
V̄
(

1− (1− y)2
)
, (48)

where V̄ is the average velocity in the channel. Following [65], we define the
capillary number as Ca = µ1Eh

σ , where E = 3V̄ is the shear rate at the wall
(noting that the channel half height is 1) and h = 0.4511 is the initial height
of the drop. We take βN = 100, βCL = 100, hmin = 1

64 , and ε = 1.5hmin

in our simulations. It should be noted that, since the contact lines do not
move, the exact value of βCL does not change the solution. However, to
achieve desirable pinning performance, a large enough βCL needs to be used
when the contact line is pinned.
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Figure 14: Schematic of a drop under shear in plane Poiseuille flow.

The steady-state drop shapes are given in Fig. 15. Our results match
those of the boundary integral method almost perfectly. Since we pin the
contact line through the fluid velocity, it is very difficult to achieving exact
pinning due to numerical errors in computing the flow field and advecting
the level-set function. Thus the contact line may shift away from its original
position. At the leading (left) edge of the drop, as shown in Fig. 16(a), the
contact line is blown downstream as Ca increases. This trend is probably
related to the finite thickness of the numerical interface, which may cause a
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large error when the interface is almost parallel to the wall, i.e., when the
dynamic contact angle is close to 0◦ or 180◦. This error is however acceptable
compared to the computational mesh: the maximum displacement of the
contact line is around hmin

4 at Ca = 0.15. At the trailing (right) edge of the
drop, the contact line is nicely pinned because the dynamic contact angle is
close to 90◦
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Figure 15: Comparison with the boundary-integral results of Schleizer and Bonnecaze [65].
From top to bottom, Ca=0.05, 0.10, and 0.15. The solid lines represent the boundary-
integral results, while the dashed lines indicate our level-set results.

4.5. Advancing and receding contact lines in a channel

In this test case, we consider two immiscible fluids separated by two
interfaces in a plane Poiseuille flow. Due to symmetry, we only compute
the lower half of the channel, which is a rectangular domain [0, 8] × [0, 1],
as shown in Fig. 17. The channel is long enough such that the inflow and
outflow conditions are not affected by interface deformation. The two inter-
faces are initially vertical and located at x = 3 and 5, respectively. Under
flow, the contact line to the left eventually recedes with respect to fluid 1
while the other contact line advances; we henceforth refer to these two con-
tact lines as receding and advancing contact lines, respectively, even when
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Figure 16: Zoomed views of the steady-state interface in the vicinity of the contact lines.
Ca = 0 denotes the undeformed interface.
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Figure 17: Schematic of advancing and receding contact lines in a channel

they are pinned. The system is inertialess and the two components have the
same viscosity µ = 1. The surface tension is set to σ = 1. The prescribed
advancing and receding contact angles are θR = 75◦ and θA = 135◦, respec-
tively. We take the following friction coefficients: βN = 100, βCL = 1 for
moving contact lines, and βCL = 100 for pinned contact lines. On the left
boundary x = 0, we impose the same parabolic velocity profile as (48). We

take V̄ = 0.01 such that Ca = µV̄
σ = 0.01 is small enough and the deformed

interfaces remain almost circular. For convenience we define a normalized
time t∗ = tV̄

H , where H = 1 is the half height of the channel.
Typical interface shapes are given in Fig. 18 and the zooms at the contact

line are shown in Fig. 19. The receding contact line remains pinned until
about t∗ = 0.0876 and the advancing one remains pinned until about t∗ =
0.2906. For a circular interface with a pinned contact line, we can find the
following relation between dynamic angle θD and normalized time t∗ based

on mass conservation [37]: t∗ = 1
2
H
V̄

(
δ

sin2 δ
− cot δ

)
, where δ = |π2 − θD|.

This gives t∗ = 0.0881 for the receding contact line to achieve θD = 75◦

and t∗ = 0.2854 for the advancing contact line to achieve θD = 135◦. Our
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numerical depinning times agree with these theoretical predictions very well.
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Figure 18: Shapes of advancing and receding interfaces in a channel. The red dotted
lines correspond to the receding angle θR = 75◦ and the the advancing angle θA = 135◦,
respectively.

4.6. Sliding drop

This test case is adapted from [34]. We consider the deformation of a
drop on a wall which is slowly inclined, as shown in Fig. 20. The drop is
initially semicircular with radius R0 = 0.5, and the computational domain
is a rectangle of 5× 1. The finest mesh is set to hmin = 1

128 . We choose the
following fluid properties: ρ1 = 1, ρ2 = 0.01, µ1 = 1, µ2 = 0.1, and σ = 1.
Since ρ2 � ρ1, we define the Bond number as Bo = ρ1gR

2
0/σ, according to

which the magnitude of gravitational acceleration g is adjusted to achieve
different Bo. The wall is initially horizontal and slowly inclined until the
drop starts to slide. Each inclination angle α is maintained for a period of
the greater of the inertia-capillary time

√
ρ1R3

0/σ and the visco-capillary
time µ1R/σ, which is 0.5 for our chosen parameters, to allow enough time
for the drop to deform. The increment of slop angle varies depending on
whether the inclination angle is near critical. In the simulations, instead of
rotating the computational domain, we rotate the gravitational acceleration
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Figure 19: Evolution of the interfaces in the vicinity of the contact lines.
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Figure 20: Schematic of a drop on an inclined wall.

g = −g(sinα, cosα). For the contact line, we take βN = 100, βCL = 1 at
the moving contact line, and βCL = 100 at the pinned contact line.

Theoretically, based on a force balance along the wall, one can derive
the critical inclination angle αc when the drop starts to slide [66, 67]:

1

2
πR2ρ1g sinαc = σ(cos θR − cos θA), (49)

31



(cosθ
R
 ­cosθ

A
 )/Bo

s
in

α
c

0 0.25 0.5 0.75 1 1.25 1.5 1.75
0

0.25

0.5

0.75

1

Theoretical

Numerical

Figure 21: Critical inclination angle αc versus (cos θR − cos θA)/Bo.

which can be rewritten as

sinαc =
2

πBo
(cos θR − cos θA) . (50)

By choosing different hysteresis angles and Bond numbers, we can compute
the corresponding critical inclination angles αc and compare against the
theoretical relation (50). Here, we test Bo = 0.5, 1.0 and 2.0 with different
hysteresis angles (θR, θA) = (80◦, 100◦), (60◦, 120◦), and (40◦, 140◦), which
are the same as in [34]. The critical inclination angles are summarized in
Fig. 21, which indicates a very good agreement with the theoretical relation
(50). Quantitatively, the agreement is better than that obtained by the
volume-of-fluid method in [34]. In terms of computational mesh, our finest
mesh size is slightly smaller, but the total number of cells, typically around
2000, is much less than the 500× 100 uniform mesh in [34].

The critical drop shapes are displayed in Fig. 22. For small Bond num-
bers, when the hysteresis is sufficiently large, the drop is pinned on the wall
even when the inclination angle achieves 90◦. For example, at Bo = 0.5, the
drops are pinned on the wall with identical shapes for (θR, θA) = (60◦, 120◦)
and (40◦, 140◦). In these two cases, αc does not exist.

Drop shape evolutions for selected parameters are given in Fig. 23. Each
curve denotes the interface obtained with the inclination angle α being fixed
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Figure 22: Drop shapes at critical inclination angles. Bo is fixed in each row and (θR, θA)
is fixed in each column. The theoretical values of αc are given in the parentheses.

for a time span of 0.5. It can be viewed approximately as the steady drop
shape for the given α. In (a), gravity is dominant and θA is close to the
initial contact angle of 90◦. At α = 0◦, the drop spreads due to gravity. As
α increases, the dynamic contact angle at the advancing contact line (left)
increases and the one at the receding contact line (right) decreases. The
advancing contact line moves first with the receding one pinned at α = 3◦.
At α = 6.9◦, the receding contact line starts to move at a very low speed and
this angle is recorded as the critical inclination angle. In (b), the hysteresis
window is increased to [60◦, 120◦]. θA is big enough to inhibit the initial
drop spreading at α = 0◦: the drop flattens under gravity, but the contact
lines remain pinned. The later dynamics is similar to that in (a). At a
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(c) Bo = 0.5, θA = 120◦, θR = 60◦.

Figure 23: Evolutions of drop shapes.

sufficiently small Bo, gravity is insufficient to overcome the contact angle
hysteresis, as shown in (c). As a result, the drop deforms with contact lines
pinned.
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5. Concluding remarks

We have developed a level-set method, where the level-set function is
reinitialized by an interface-preserving method that we previously devel-
oped. The flow equations are solved by a continuous finite element method
while the level-set equation is solved by a discontinuous Galerkin method
on an adaptive quadrilateral mesh. After a careful validation against the
Cox theory, we come up with a computational strategy for practical contact
line simulations. Furthermore, our method can be easily modified to accom-
modate contact angle hysteresis. The main results can be summarized as
follows.

(i) Reasonable accuracy can be achieved as long as the mesh size hmin

is able to resolve the interfacial thickness ε and the numerical slip
ls = µ

βN
: hmin . ε . ls. For a sharp-interface method that does not

use the continuum surface force method to apply surface tension, we
expect this criterion to reduce to hmin . ls.

(ii) In additional to βN , the contact line friction βCL also affects the effec-
tive slip length. In particular, a single slip length in the Cox theory
can be reproduced by different combinations of (βN , βCL). In practical
computations, we suggest to prescribe βN based on the mesh conver-
gence requirement and then use βCL as the only fitting parameter to
achieve desired slip. By using this strategy, we have obtained a reason-
able agreement with the drop spreading experiment. Since our method
does not rely on external models to impose the contact angle condition,
it is easy to implement numerically.

(iii) In our method, the dynamic contact angle can be readily obtained
from the level-set function, based on which we can determine whether
the contact line is pinned, advances, or recedes. Meanwhile, the weak
form for the pinned contact line only differs a little from that for the
moving contact line. All these properties make it easy to incorporate
contact angle hysteresis. More importantly, our method demonstrates
very good accuracy in capturing hysteresis.

Although this work focuses on the level-set method, we expect the com-
putational strategy and hysteresis model to be applicable to a wide range
of GNBC-based methods. All the simulations are in 2D, but the formula-
tions are ready for 3D and the development of an efficient 3D flow solver is
currently ongoing.
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